We prove that the general tensor of size 2^n and rank k has a unique decomposition as the sum of decomposable tensors if k ≤ 0.9997*2^n/(n+1) (the constant 1 being the optimal value). Similarly, the general tensor of size 3^n and rank k has a unique decomposition as the sum of decomposable tensors if k ≤ 0.998*3^n/(2n+1), (the constant 1 being the optimal value). Some results of this flavor are obtained for tensors of any size, but the explicit bounds obtained are weaker.

Refined methods for the identifiability of tensors / Cristiano Bocci;Luca Chiantini;Giorgio Ottaviani. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - STAMPA. - 193:(2014), pp. 1691-1702. [10.1007/s10231-013-0352-8]

Refined methods for the identifiability of tensors

OTTAVIANI, GIORGIO MARIA
2014

Abstract

We prove that the general tensor of size 2^n and rank k has a unique decomposition as the sum of decomposable tensors if k ≤ 0.9997*2^n/(n+1) (the constant 1 being the optimal value). Similarly, the general tensor of size 3^n and rank k has a unique decomposition as the sum of decomposable tensors if k ≤ 0.998*3^n/(2n+1), (the constant 1 being the optimal value). Some results of this flavor are obtained for tensors of any size, but the explicit bounds obtained are weaker.
2014
193
1691
1702
Cristiano Bocci;Luca Chiantini;Giorgio Ottaviani
File in questo prodotto:
File Dimensione Formato  
1303.6915v3.pdf

accesso aperto

Tipologia: Altro
Licenza: Open Access
Dimensione 197.44 kB
Formato Adobe PDF
197.44 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/906416
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 52
  • ???jsp.display-item.citation.isi??? 43
social impact