We consider the inverse problem of determining the Lam'{e} parameters and the density of a three-dimensional elastic body from the local time-harmonic Dirichlet-to-Neumann map. We prove uniqueness and Lipschitz stability of this inverse problem when the Lam'{e} parameters and the density are assumed to be piecewise constant on a given domain partition.
Uniqueness and Lipschitz stability of an inverse boundary value problem for time-harmonic elastic waves / Elena Beretta; Maarten V. de Hoop; Elisa Francini; Sergio Vessella; Jian Zhai. - In: INVERSE PROBLEMS. - ISSN 0266-5611. - STAMPA. - 33:(2017), pp. 035013.1-035013.27. [10.1088/1361-6420/aa5bef]
Uniqueness and Lipschitz stability of an inverse boundary value problem for time-harmonic elastic waves
FRANCINI, ELISA;VESSELLA, SERGIO;
2017
Abstract
We consider the inverse problem of determining the Lam'{e} parameters and the density of a three-dimensional elastic body from the local time-harmonic Dirichlet-to-Neumann map. We prove uniqueness and Lipschitz stability of this inverse problem when the Lam'{e} parameters and the density are assumed to be piecewise constant on a given domain partition.File | Dimensione | Formato | |
---|---|---|---|
berettadehoopfrancinivessellazhai2017.pdf
solo utenti autorizzati
Descrizione: Articolo principale
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
1.63 MB
Formato
Adobe PDF
|
1.63 MB | Adobe PDF | Richiedi una copia |
multiparameter_IBVP_final.pdf
accesso aperto
Descrizione: Manoscritto originale dell'autore
Tipologia:
Altro
Licenza:
Creative commons
Dimensione
397.61 kB
Formato
Adobe PDF
|
397.61 kB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.