We extend to the BV case a measure theoretic lemma previously proved by DiBenedetto, Gianazza and Vespri in $W^{1,1}_{loc}$ . It states that if the set where u is positive occupies a sizable portion of an open set E then the set where u is positive clusters about at least one point of E.
A Quantitative Lusin Theorem for Functions in BV / Telcs, Andras; Vespri, Vincenzo. - STAMPA. - (2015), pp. 81-87. [10.1007/978-3-319-02666-4_4]
A Quantitative Lusin Theorem for Functions in BV
VESPRI, VINCENZO
2015
Abstract
We extend to the BV case a measure theoretic lemma previously proved by DiBenedetto, Gianazza and Vespri in $W^{1,1}_{loc}$ . It states that if the set where u is positive occupies a sizable portion of an open set E then the set where u is positive clusters about at least one point of E.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Geometric Metods in PDEs.pdf
Accesso chiuso
Descrizione: File
Tipologia:
Pdf editoriale (Version of record)
Licenza:
DRM non definito
Dimensione
87.91 kB
Formato
Adobe PDF
|
87.91 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.