During sintering, porcelain changes its phase composition as well as its physical and mechanical properties. The most evident effect of these transformations is a significant change of shape, which is a combination of shrinkage and pyroplastic deformations, caused by softening. Both of these phenomena are induced by temperature, which is on its turn influenced by several variable factors that are difficult to predict. Especially for products manufactured in large scale, the resulting shape of artefacts may significantly vary even among the same batch. Consequently, for companies demanding high quality standard, this variability entails a high number of rejected products. For this reason, the present work aims at investigating the amount of variation introduced by firing process for an actual industrial product, independently from other (more or less) known variation sources such as the ones related to materials and forming processes. This could help process engineers to focus their attention when trying to improve the quality of final products.
Analysis of deformations induced by manufacturing processes of fine porcelain whiteware / Puggelli, Luca; Volpe, Yary; Giurgola, Stefano. - ELETTRONICO. - (2017), pp. 1063-1072. [10.1007/978-3-319-45781-9_106]
Analysis of deformations induced by manufacturing processes of fine porcelain whiteware
PUGGELLI, LUCA;VOLPE, YARY;
2017
Abstract
During sintering, porcelain changes its phase composition as well as its physical and mechanical properties. The most evident effect of these transformations is a significant change of shape, which is a combination of shrinkage and pyroplastic deformations, caused by softening. Both of these phenomena are induced by temperature, which is on its turn influenced by several variable factors that are difficult to predict. Especially for products manufactured in large scale, the resulting shape of artefacts may significantly vary even among the same batch. Consequently, for companies demanding high quality standard, this variability entails a high number of rejected products. For this reason, the present work aims at investigating the amount of variation introduced by firing process for an actual industrial product, independently from other (more or less) known variation sources such as the ones related to materials and forming processes. This could help process engineers to focus their attention when trying to improve the quality of final products.I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.