In this thesis work, after a brief introduction of some basic concepts of quantum optics, some experimental techniques useful for the manipulation of quantum states of light are presented. In particular, I focused on two transformations operated at the single-photon level, like the addition and the subtraction of a single photon from a travelling light beam. Both these methods share a probabilistic approach, that is their implementation has a non unitary success probability. Anyway, the detection of an additional photon in an ancillary mode exactly announces when the operation has been actually implemented. That's why this type of implementation is generally called heralded. Starting from these basic operations, a way to implement some of their superpositions is then analyzed. In the second part of this thesis, I describe two state-engineering experiments based on these fundamental operations. The first one realizes a so-called universal orthogonalizer, an universal strategy that, given an arbitrary input state, can be used to produce at the output an orthogonal one. The adjective universal refers to the fact that the procedure works equally well for arbitrary input fields. The other experiment uses coherent superpositions of basic quantum operations to emulate a strong Kerr nonlinearity at the few-photon level, and could be used to implement new logic gates for quantum computation. The third part of this thesis is dedicated to a different experimental approach, in some sense complementary to state engineering: mode engineering. Indeed, while in state engineering the purpose is the detection of an unknown state after its manipulation, in mode engineering experiments the perspective is completely reversed: the final state is assumed to be known and what has to be inferred are its spatio-temporal features. By following this alternative experimental approach, the interaction of broadband single photons with resonant atomic vapours is analyzed by observing the traces left on the photon temporal shape.
Hybrid quantum state and mode engineering of light / Costanzo, Luca Salvatore. - (2017).
Hybrid quantum state and mode engineering of light
COSTANZO, LUCA SALVATORE
2017
Abstract
In this thesis work, after a brief introduction of some basic concepts of quantum optics, some experimental techniques useful for the manipulation of quantum states of light are presented. In particular, I focused on two transformations operated at the single-photon level, like the addition and the subtraction of a single photon from a travelling light beam. Both these methods share a probabilistic approach, that is their implementation has a non unitary success probability. Anyway, the detection of an additional photon in an ancillary mode exactly announces when the operation has been actually implemented. That's why this type of implementation is generally called heralded. Starting from these basic operations, a way to implement some of their superpositions is then analyzed. In the second part of this thesis, I describe two state-engineering experiments based on these fundamental operations. The first one realizes a so-called universal orthogonalizer, an universal strategy that, given an arbitrary input state, can be used to produce at the output an orthogonal one. The adjective universal refers to the fact that the procedure works equally well for arbitrary input fields. The other experiment uses coherent superpositions of basic quantum operations to emulate a strong Kerr nonlinearity at the few-photon level, and could be used to implement new logic gates for quantum computation. The third part of this thesis is dedicated to a different experimental approach, in some sense complementary to state engineering: mode engineering. Indeed, while in state engineering the purpose is the detection of an unknown state after its manipulation, in mode engineering experiments the perspective is completely reversed: the final state is assumed to be known and what has to be inferred are its spatio-temporal features. By following this alternative experimental approach, the interaction of broadband single photons with resonant atomic vapours is analyzed by observing the traces left on the photon temporal shape.File | Dimensione | Formato | |
---|---|---|---|
TesiPHD3.pdf
accesso aperto
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Open Access
Dimensione
7.62 MB
Formato
Adobe PDF
|
7.62 MB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.