In the spring of 2013, the Parma Province (Northern Italy) was affected by a large number of landslides, as a result of heavy and persistent rainfall occurred between January and April. This resulted in the triggering of about 1400 mapped landslides, which caused severe damages. In particular, on April 6th 2013, a large landslide activated in Tizzano Val Parma municipality. It stretches from an altitude of 980 m to about 630 m a.s.l., covering an area of 0.92 km2 with a total length of 3600 m. It is constituted by two main adjacent enlarging bodies with a roto-translational kinematics, channelizing downstream the Bardea Creek, forming an earth flow. The landslide crown area destroyed a 450 m-long sector of a provincial roadway, and its retrogression tendency put at risk the Capriglio and Pianestolla villages, located in the upper watershed area of the Bardea river. Moreover, the advancing toe threatened the Antria bridge, representing the “Massese” provincial roadway transect over the Bardea Creek. This work describes the main results of the landslide mapping and monitoring activities, conducted after the landslide trigger. With the aim of supporting local authorities in the hazard assessment and risk management, an integrated analysis of various remote sensing data was developed, in order to generate a multi-temporal mapping of the landslide, whose velocity reached values of several tens of meters per day in the first month, and several meters per day from early May to mid-July 2013. Satellite and aerial post-event images were analyzed, together with the results of field surveys, to accurately map the landslide extension and evolution. Moreover, on May 2013, a GB-InSAR (Ground Based Interferometric Synthetic Aperture Radar) monitoring campaign was started in order to assess displacements of the whole landslide area and to support early warning activities. The GB-InSAR acquired until December 2013.
Remote sensing mapping and monitoring of the Capriglio landslide (Parma Province, Northern Italy) / Bardi F.; Raspini F.; Frodella W.; Lombardi L.; Nocentini M.; Gigli G.; Morelli S.; Corsini A.; Casagli N.. - STAMPA. - (2017), pp. 231-238. [10.1007/978-3-319-53487-9_26]
Remote sensing mapping and monitoring of the Capriglio landslide (Parma Province, Northern Italy)
BARDI, FEDERICA;RASPINI, FEDERICO;FRODELLA, WILLIAM;LOMBARDI, LUCA;NOCENTINI, MASSIMILIANO;GIGLI, GIOVANNI;MORELLI, STEFANO;CORSINI, ALESSANDRO;CASAGLI, NICOLA
2017
Abstract
In the spring of 2013, the Parma Province (Northern Italy) was affected by a large number of landslides, as a result of heavy and persistent rainfall occurred between January and April. This resulted in the triggering of about 1400 mapped landslides, which caused severe damages. In particular, on April 6th 2013, a large landslide activated in Tizzano Val Parma municipality. It stretches from an altitude of 980 m to about 630 m a.s.l., covering an area of 0.92 km2 with a total length of 3600 m. It is constituted by two main adjacent enlarging bodies with a roto-translational kinematics, channelizing downstream the Bardea Creek, forming an earth flow. The landslide crown area destroyed a 450 m-long sector of a provincial roadway, and its retrogression tendency put at risk the Capriglio and Pianestolla villages, located in the upper watershed area of the Bardea river. Moreover, the advancing toe threatened the Antria bridge, representing the “Massese” provincial roadway transect over the Bardea Creek. This work describes the main results of the landslide mapping and monitoring activities, conducted after the landslide trigger. With the aim of supporting local authorities in the hazard assessment and risk management, an integrated analysis of various remote sensing data was developed, in order to generate a multi-temporal mapping of the landslide, whose velocity reached values of several tens of meters per day in the first month, and several meters per day from early May to mid-July 2013. Satellite and aerial post-event images were analyzed, together with the results of field surveys, to accurately map the landslide extension and evolution. Moreover, on May 2013, a GB-InSAR (Ground Based Interferometric Synthetic Aperture Radar) monitoring campaign was started in order to assess displacements of the whole landslide area and to support early warning activities. The GB-InSAR acquired until December 2013.File | Dimensione | Formato | |
---|---|---|---|
Bardi et al SPRINGER 2017.pdf
Accesso chiuso
Descrizione: Articolo principale
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
3.57 MB
Formato
Adobe PDF
|
3.57 MB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.