Let $1le pleinfty$. We show that a function $uin C(mathbb R^N)$ is a viscosity solution to the normalized $p$-Laplace equation $Delta_p^n u(x)=0$ if and only if the asymptotic formula $$ u(x)=mu_p(e,u)(x)+o(e^2) $$ holds as $e o 0$ in the viscosity sense. Here, $mu_p(e,u)(x)$ is the $p$-mean value of $u$ on $B_e(x)$ characterized as a unique minimizer of $$ r u-la r_{L^p(B_e(x))} $$ with respect to $lambdainBbb R$. This kind of asymptotic mean value property (AMVP) extends to the case $p=1$ previous (AMVP)'s obtained when $mu_p(e,u)(x)$ is replaced by other kinds of mean values. The natural definition of $mu_p(e,u)(x)$ makes sure that this is a monotonic and continuous (in the appropriate topology) functional of $u$. These two properties help to establish a fairly general proof of (AMVP), that can also be extended to the (normalized) parabolic $p$-Laplace equation.

A natural approach to the asymptotic mean value property for the p-Laplacian / Ishiwata, Michinori; Magnanini, Rolando; Wadade, Hidemitsu. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0944-2669. - STAMPA. - 56:(2017), pp. 97.1-97.22. [10.1007/s00526-017-1188-7]

A natural approach to the asymptotic mean value property for the p-Laplacian

MAGNANINI, ROLANDO;
2017

Abstract

Let $1le pleinfty$. We show that a function $uin C(mathbb R^N)$ is a viscosity solution to the normalized $p$-Laplace equation $Delta_p^n u(x)=0$ if and only if the asymptotic formula $$ u(x)=mu_p(e,u)(x)+o(e^2) $$ holds as $e o 0$ in the viscosity sense. Here, $mu_p(e,u)(x)$ is the $p$-mean value of $u$ on $B_e(x)$ characterized as a unique minimizer of $$ r u-la r_{L^p(B_e(x))} $$ with respect to $lambdainBbb R$. This kind of asymptotic mean value property (AMVP) extends to the case $p=1$ previous (AMVP)'s obtained when $mu_p(e,u)(x)$ is replaced by other kinds of mean values. The natural definition of $mu_p(e,u)(x)$ makes sure that this is a monotonic and continuous (in the appropriate topology) functional of $u$. These two properties help to establish a fairly general proof of (AMVP), that can also be extended to the (normalized) parabolic $p$-Laplace equation.
2017
56
1
22
Ishiwata, Michinori; Magnanini, Rolando; Wadade, Hidemitsu
File in questo prodotto:
File Dimensione Formato  
IMWCorrectedProofs20170606.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 155.31 kB
Formato Adobe PDF
155.31 kB Adobe PDF
ReprintCVPDE.pdf

Open Access dal 10/06/2018

Descrizione: Articolo principale
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 525.93 kB
Formato Adobe PDF
525.93 kB Adobe PDF
1604.00520v1.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Altro
Licenza: Tutti i diritti riservati
Dimensione 255.51 kB
Formato Adobe PDF
255.51 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1096927
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 12
social impact