We consider an explorative method for unsupervised clustering of upper level units in a two-level hierarchical setting. The idea lies in applying a density-based clustering algorithm to the predicted random effects obtained from a multilevel cumulative logit model. We illustrate the proposed approach throughout the analysis of data from European Social Survey about political trust in European countries.

Clustering Upper Level Units in Multilevel Models for Ordinal Data / Grilli, Leonardo; Panzera, Agnese; Rampichini, Carla. - STAMPA. - (2018), pp. 137-144. [10.1007/978-3-319-55708-3_15]

Clustering Upper Level Units in Multilevel Models for Ordinal Data

Grilli, Leonardo;Panzera, Agnese;Rampichini, Carla
2018

Abstract

We consider an explorative method for unsupervised clustering of upper level units in a two-level hierarchical setting. The idea lies in applying a density-based clustering algorithm to the predicted random effects obtained from a multilevel cumulative logit model. We illustrate the proposed approach throughout the analysis of data from European Social Survey about political trust in European countries.
2018
978-3-319-55707-6
978-3-319-55708-3
Classification, (Big) Data Analysis and Statistical Learning
137
144
Grilli, Leonardo; Panzera, Agnese; Rampichini, Carla
File in questo prodotto:
File Dimensione Formato  
Clustering multilevel ordinal - Grilli Panzera Rampichini 2018.pdf

Accesso chiuso

Descrizione: articolo principale
Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 573.43 kB
Formato Adobe PDF
573.43 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1113338
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact