We study the local boundedness of minimizers of a nonuniformly energy integral of the form ∫ Ω f(x,Dv) dx under p, q-growth conditions of the type λ(x)|ξ|p ≤ f(x, ξ) ≤ μ(x) (1 + |ξ|q) for some exponents q ≥ p > 1 and with nonnegative functions λ, μ satisfying some summability conditions. We use here the original notation introduced in 1971 by Trudinger [26], where λ(x) and μ(x) had the role of the minimum and the maximum eigenvalues of an n × n symmetric matrix (aij (x)) and f(x, ξ) =Σni,j=1 aij (x) ξiξj was the energy integrand associated to a linear nonuniformly elliptic equation in divergence form. In this paper we consider a class of energy integrals, associated to nonlinear nonuniformly elliptic equations and systems, with integrands f(x, ξ) satisfying the general growth conditions above.

Nonuniformly elliptic energy integrals with p,q-growth / Giovanni Cupini, Paolo Marcellini, Elvira Mascolo. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - STAMPA. - 177:(2018), pp. 312-324. [10.1016/j.na.2018.03.018]

Nonuniformly elliptic energy integrals with p,q-growth

Giovanni Cupini;Paolo Marcellini
;
Elvira Mascolo
2018

Abstract

We study the local boundedness of minimizers of a nonuniformly energy integral of the form ∫ Ω f(x,Dv) dx under p, q-growth conditions of the type λ(x)|ξ|p ≤ f(x, ξ) ≤ μ(x) (1 + |ξ|q) for some exponents q ≥ p > 1 and with nonnegative functions λ, μ satisfying some summability conditions. We use here the original notation introduced in 1971 by Trudinger [26], where λ(x) and μ(x) had the role of the minimum and the maximum eigenvalues of an n × n symmetric matrix (aij (x)) and f(x, ξ) =Σni,j=1 aij (x) ξiξj was the energy integrand associated to a linear nonuniformly elliptic equation in divergence form. In this paper we consider a class of energy integrals, associated to nonlinear nonuniformly elliptic equations and systems, with integrands f(x, ξ) satisfying the general growth conditions above.
2018
177
312
324
Giovanni Cupini, Paolo Marcellini, Elvira Mascolo
File in questo prodotto:
File Dimensione Formato  
2018_10_17_on_line_1-s2.0-S0362546X18300762-main.pdf

Accesso chiuso

Descrizione: reprint on line
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 726.41 kB
Formato Adobe PDF
726.41 kB Adobe PDF   Richiedi una copia
CUP-MAR-MAS-NA-S-18-00397.pdf

accesso aperto

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 335.23 kB
Formato Adobe PDF
335.23 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1136498
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 31
social impact