We consider Serrin’s overdetermined problem for the torsional rigidity and Alexandrov’s Soap Bubble Theorem. We present new integral identities, that show a strong analogy between the two problems and help to obtain better (in some cases optimal) quantitative estimates for the radially symmetric configuration. The estimates for the Soap Bubble Theorem benefit from those of Serrin’s problem.
Serrin's problem and Alexandrov's Soap Bubble Theorem: enhanced stability via integral identities / Rolando Magnanini, Giorgio Poggesi. - In: INDIANA UNIVERSITY MATHEMATICS JOURNAL. - ISSN 0022-2518. - STAMPA. - 69:(2020), pp. 1181-1205. [10.1512/iumj.2020.69.7925]
Serrin's problem and Alexandrov's Soap Bubble Theorem: enhanced stability via integral identities
Rolando Magnanini
;Giorgio Poggesi
2020
Abstract
We consider Serrin’s overdetermined problem for the torsional rigidity and Alexandrov’s Soap Bubble Theorem. We present new integral identities, that show a strong analogy between the two problems and help to obtain better (in some cases optimal) quantitative estimates for the radially symmetric configuration. The estimates for the Soap Bubble Theorem benefit from those of Serrin’s problem.File | Dimensione | Formato | |
---|---|---|---|
ReprintIUMJ7925.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Open Access
Dimensione
302.34 kB
Formato
Adobe PDF
|
302.34 kB | Adobe PDF | |
MagnaniniPoggesiArx1708.07392v2.pdf
accesso aperto
Descrizione: Versione arxiv
Tipologia:
Preprint (Submitted version)
Licenza:
Open Access
Dimensione
266.29 kB
Formato
Adobe PDF
|
266.29 kB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.