The exponent of matrix multiplication is the smallest constant ω such that two n × n matrices may be multiplied by performing O(n ω+e ) arithmetic operations for every e > 0. Determining the constant ω is a central question in both computer science and mathematics. We define certain symmetric tensors, that is, cubic polynomials, and our main result is that their symmetric rank also grows with the same exponent ω, so that ω can be computed in the symmetric setting, where it may be easier to determine.

Polynomials and the exponent of matrix multiplication / Luca Chiantini, Jon Hauenstein, Christian Ikenmeyer, Joseph Landsberg, Giorgio Ottaviani. - In: BULLETIN OF THE LONDON MATHEMATICAL SOCIETY. - ISSN 0024-6093. - STAMPA. - 50:(2018), pp. 369-389. [10.1112/blms.12147]

Polynomials and the exponent of matrix multiplication

Giorgio Ottaviani
2018

Abstract

The exponent of matrix multiplication is the smallest constant ω such that two n × n matrices may be multiplied by performing O(n ω+e ) arithmetic operations for every e > 0. Determining the constant ω is a central question in both computer science and mathematics. We define certain symmetric tensors, that is, cubic polynomials, and our main result is that their symmetric rank also grows with the same exponent ω, so that ω can be computed in the symmetric setting, where it may be easier to determine.
2018
50
369
389
Luca Chiantini, Jon Hauenstein, Christian Ikenmeyer, Joseph Landsberg, Giorgio Ottaviani
File in questo prodotto:
File Dimensione Formato  
sym_mmult_revised3.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 436.74 kB
Formato Adobe PDF
436.74 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1137852
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 12
social impact