In this study, a new series of N,N-bis(alkanol)amine aryl ester heterodimers was synthesized and studied. The new compounds were designed based on the structures of our previous arylamine ester derivatives endowed with high P-gp-dependent multidrug resistance reversing activity on a multidrug-resistant leukemia cell line. All new compounds were active in the pirarubicin uptake assay on the doxorubicin–resistant erythroleukemia K562 cells (K562/DOX). Compounds bearing a linker made up of 10 methylenes showed unprecedented high reversal activities regardless of the combination of aromatic moieties. Docking results obtained by an in silico study supported the data obtained by the biological tests and a study devoted to establish the chemical stability in phosphate buffer solution (PBS) and human plasma showed that only a few compounds exhibited a significant degradation in the human plasma matrix. Ten selected non-hydrolysable derivatives were able to inhibit the P-gp-mediated rhodamine-123 efflux on K562/DOX cells, and the evaluation of their apparent permeability and ATP consumption on other cell lines suggested that the compounds can behave as unambiguous or not transported substrates. The activity of these the compounds on the transport proteins breast cancer resistance protein (BCRP) and multidrug resistance associated protein 1 (MRP1) was also analyzed. All tested derivatives displayed a moderate potency on the BCRP overexpressing cells; while only four molecules showed to be effective on MRP1 overexpressing cells, highlighting a clear structural requirement for selectivity. In conclusion, we have identified a new very powerful series of compounds which represent interesting leads for the development of new potent and efficacious P-gp-dependent MDR modulators
In this study, a new series of N,N-bis(alkanol)amine aryl ester heterodimers was synthesized and studied. The new compounds were designed based on the structures of our previous arylamine ester derivatives endowed with high P-gp-dependent multidrug resistance reversing activity on a multidrug-resistant leukemia cell line. All new compounds were active in the pirarubicin uptake assay on the doxorubicin–resistant erythroleukemia K562 cells (K562/DOX). Compounds bearing a linker made up of 10 methylenes showed unprecedented high reversal activities regardless of the combination of aromatic moieties. Docking results obtained by an in silico study supported the data obtained by the biological tests and a study devoted to establish the chemical stability in phosphate buffer solution (PBS) and human plasma showed that only a few compounds exhibited a significant degradation in the human plasma matrix. Ten selected non-hydrolysable derivatives were able to inhibit the P-gp-mediated rhodamine-123 efflux on K562/DOX cells, and the evaluation of their apparent permeability and ATP consumption on other cell lines suggested that the compounds can behave as unambiguous or not transported substrates. The activity of these the compounds on the transport proteins breast cancer resistance protein (BCRP) and multidrug resistance associated protein 1 (MRP1) was also analyzed. All tested derivatives displayed a moderate potency on the BCRP overexpressing cells; while only four molecules showed to be effective on MRP1 overexpressing cells, highlighting a clear structural requirement for selectivity. In conclusion, we have identified a new very powerful series of compounds which represent interesting leads for the development of new potent and efficacious P-gp-dependent MDR modulators.
Modulation of the spacer in N,N-bis(alkanol)amine aryl ester heterodimers led to the discovery of a series of highly potent P-glycoprotein-based multidrug-resistance (MDR) modulators / Silvia Dei, Laura Braconi, Alfonso Trezza, Marta Menicatti, Marialessandra Contino, Marcella Coronnello, Niccolò Chiaramonte, Dina Manetti, Maria Grazia Perrone, Maria Novella Romanelli, Chatchanok Udomtanakunchai, Nicola Antonio Colabufo, Gian luca Bartolucci, Ottavia Spiga, Milena Salerno, Elisabetta Teodori. - In: EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY. - ISSN 1768-3254. - ELETTRONICO. - 172:(2019), pp. 71-94. [10.1016/j.ejmech.2019.03.054]
Modulation of the spacer in N,N-bis(alkanol)amine aryl ester heterodimers led to the discovery of a series of highly potent P-glycoprotein-based multidrug-resistance (MDR) modulators
Silvia Dei
;BRACONI, LAURA;Marta Menicatti;Marcella Coronnello;Niccolò Chiaramonte;Dina Manetti;Maria Novella Romanelli;Gian luca Bartolucci;Elisabetta Teodori
2019
Abstract
In this study, a new series of N,N-bis(alkanol)amine aryl ester heterodimers was synthesized and studied. The new compounds were designed based on the structures of our previous arylamine ester derivatives endowed with high P-gp-dependent multidrug resistance reversing activity on a multidrug-resistant leukemia cell line. All new compounds were active in the pirarubicin uptake assay on the doxorubicin–resistant erythroleukemia K562 cells (K562/DOX). Compounds bearing a linker made up of 10 methylenes showed unprecedented high reversal activities regardless of the combination of aromatic moieties. Docking results obtained by an in silico study supported the data obtained by the biological tests and a study devoted to establish the chemical stability in phosphate buffer solution (PBS) and human plasma showed that only a few compounds exhibited a significant degradation in the human plasma matrix. Ten selected non-hydrolysable derivatives were able to inhibit the P-gp-mediated rhodamine-123 efflux on K562/DOX cells, and the evaluation of their apparent permeability and ATP consumption on other cell lines suggested that the compounds can behave as unambiguous or not transported substrates. The activity of these the compounds on the transport proteins breast cancer resistance protein (BCRP) and multidrug resistance associated protein 1 (MRP1) was also analyzed. All tested derivatives displayed a moderate potency on the BCRP overexpressing cells; while only four molecules showed to be effective on MRP1 overexpressing cells, highlighting a clear structural requirement for selectivity. In conclusion, we have identified a new very powerful series of compounds which represent interesting leads for the development of new potent and efficacious P-gp-dependent MDR modulators.File | Dimensione | Formato | |
---|---|---|---|
EJMC_Dei_2019.pdf
Accesso chiuso
Descrizione: articolo
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
1.95 MB
Formato
Adobe PDF
|
1.95 MB | Adobe PDF | Richiedi una copia |
Dei_manuscript_2019_final.pdf
accesso aperto
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Creative commons
Dimensione
1.63 MB
Formato
Adobe PDF
|
1.63 MB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.