The increasing population density and the industrial expansion significantly affect the availability of land. In this context, the high modularity of Very Large Floating Structures (VLFSs) may indeed represent a promising alternative for multipurpose use. Furthermore, the interest for the sea as a source of renewable marine energy, particularly for wave energy, has tremendously increased in the last decade and years. Among the large diversity of Wave Energy Converters (WECs), the Oscillating Water Column (OWC) is one of the most promising concept. Moreover, when an OWC is incorporated in a VLFS, its efficiency in terms of wave energy absorption is not only increased, but also it has additionally the benefit of attenuating the heave motion of the floating structure. Hence, there is a growing interest in the development of an innovative VLFS equipped with OWC devices. In this scope, the mitigating effect of the OWC on the heave motion of the VLFS can be combined with an increased efficiency of the OWC, thus better contributing to supply energy for the facilities located on the floating system. The main goal of this PhD research is the investigation of a VLFS-OWC System conceived for a hypothetical installation in a Mediterranean area, characterized by a moderate wave climate. For this purpose, small-scale experiments have been carried out in the wave-current flume of the Maritime Engineering Laboratory (LABIMA) of Florence University. The laboratory tests focused on the effect of: (i) the OWC design parameters (i.e., OWC geometry); (ii) the incident wave conditions (i.e., regular and irregular wave trains); (iii) the damping induced by a non-linear air turbine (i.e., a self-rectifying impulse turbine) idealised by vents with different diameters in the OWC chamber roof; (iv) the length and the heave motion of the VLFS on the performance of the OWC, including the attenuating effect of the incorporated OWC on the heave motion of the VLFS-OWC system. The design of the fixed OWC, VLFS and VLFS-OWC models as well as the testing programme and laboratory procedures, are based on an extensive literature review of the available numerical and physical models on OWC devices and VLFS technologies. The main findings of this study may be summarized as follows: - the most dominant parameters affecting the performance of a fixed OWC are the chamber width (in wave propagation direction), the front wall draught and the damping induced by the air turbine; - the additional parameters affecting the efficiency of an OWC integrated in a VLFS are the length of the structure and the heave motion; - formulae are developed for predicting the heave motion of the VLFS-OWC system respectively, for regular waves and irregular waves; - formulae are developed for improving the prediction of the performance of a fixed OWC for a floating OWC (integrated in a VLFS) respectively, for regular irregular waves. These findings have contributed to improve the understanding of the functioning of the OWC device and the relative importance of the aforementioned parameters affecting the device under moderate wave climate.

OSCILLATING WATER COLUMN WAVE ENERGY CONVERTERS INTEGRATED IN VERY LARGE FLOATING STRUCTURES / Ilaria Crema. - (2017).

OSCILLATING WATER COLUMN WAVE ENERGY CONVERTERS INTEGRATED IN VERY LARGE FLOATING STRUCTURES

Ilaria Crema
2017

Abstract

The increasing population density and the industrial expansion significantly affect the availability of land. In this context, the high modularity of Very Large Floating Structures (VLFSs) may indeed represent a promising alternative for multipurpose use. Furthermore, the interest for the sea as a source of renewable marine energy, particularly for wave energy, has tremendously increased in the last decade and years. Among the large diversity of Wave Energy Converters (WECs), the Oscillating Water Column (OWC) is one of the most promising concept. Moreover, when an OWC is incorporated in a VLFS, its efficiency in terms of wave energy absorption is not only increased, but also it has additionally the benefit of attenuating the heave motion of the floating structure. Hence, there is a growing interest in the development of an innovative VLFS equipped with OWC devices. In this scope, the mitigating effect of the OWC on the heave motion of the VLFS can be combined with an increased efficiency of the OWC, thus better contributing to supply energy for the facilities located on the floating system. The main goal of this PhD research is the investigation of a VLFS-OWC System conceived for a hypothetical installation in a Mediterranean area, characterized by a moderate wave climate. For this purpose, small-scale experiments have been carried out in the wave-current flume of the Maritime Engineering Laboratory (LABIMA) of Florence University. The laboratory tests focused on the effect of: (i) the OWC design parameters (i.e., OWC geometry); (ii) the incident wave conditions (i.e., regular and irregular wave trains); (iii) the damping induced by a non-linear air turbine (i.e., a self-rectifying impulse turbine) idealised by vents with different diameters in the OWC chamber roof; (iv) the length and the heave motion of the VLFS on the performance of the OWC, including the attenuating effect of the incorporated OWC on the heave motion of the VLFS-OWC system. The design of the fixed OWC, VLFS and VLFS-OWC models as well as the testing programme and laboratory procedures, are based on an extensive literature review of the available numerical and physical models on OWC devices and VLFS technologies. The main findings of this study may be summarized as follows: - the most dominant parameters affecting the performance of a fixed OWC are the chamber width (in wave propagation direction), the front wall draught and the damping induced by the air turbine; - the additional parameters affecting the efficiency of an OWC integrated in a VLFS are the length of the structure and the heave motion; - formulae are developed for predicting the heave motion of the VLFS-OWC system respectively, for regular waves and irregular waves; - formulae are developed for improving the prediction of the performance of a fixed OWC for a floating OWC (integrated in a VLFS) respectively, for regular irregular waves. These findings have contributed to improve the understanding of the functioning of the OWC device and the relative importance of the aforementioned parameters affecting the device under moderate wave climate.
2017
Lorenzo Cappietti, Hocine Oumeraci
ITALIA
Ilaria Crema
File in questo prodotto:
File Dimensione Formato  
PhD_ICrema.pdf

accesso aperto

Descrizione: OSCILLATING WATER COLUMN WAVE ENERGY CONVERTERS INTEGRATED IN VERY LARGE FLOATING STRUCTURES
Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 13.74 MB
Formato Adobe PDF
13.74 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1152946
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact