We report on the study of binary collisions between quantum droplets formed by an attractive mixture of ultracold atoms. We distinguish two main outcomes of the collision, i.e., merging and separation, depending on the velocity of the colliding pair. The critical velocity vc that discriminates between the two cases displays a different dependence on the atom number N for small and large droplets. By comparing our experimental results with numerical simulations, we show that the nonmonotonic behavior of vcðNÞ is due to the crossover from a compressible to an incompressible regime, where the collisional dynamics is governed by different energy scales, i.e., the droplet binding energy and the surface tension. These results also provide the first evidence of the liquidlike nature of quantum droplets in the large N limit, where their behavior closely resembles that of classical liquid droplets.
Collisions of Self-Bound Quantum Droplets / Ferioli, Giovanni; Semeghini, Giulia; Masi, Leonardo; Giusti, Giovanni; Modugno, Giovanni; Inguscio, Massimo; Gallemí, Albert; Recati, Alessio; Fattori, Marco. - In: PHYSICAL REVIEW LETTERS. - ISSN 0031-9007. - STAMPA. - 122:(2019), pp. 0904011-0904015. [10.1103/PhysRevLett.122.090401]
Collisions of Self-Bound Quantum Droplets
Ferioli, Giovanni;Semeghini, Giulia;Masi, Leonardo;Giusti, Giovanni;Modugno, Giovanni;Inguscio, Massimo;Fattori, Marco
2019
Abstract
We report on the study of binary collisions between quantum droplets formed by an attractive mixture of ultracold atoms. We distinguish two main outcomes of the collision, i.e., merging and separation, depending on the velocity of the colliding pair. The critical velocity vc that discriminates between the two cases displays a different dependence on the atom number N for small and large droplets. By comparing our experimental results with numerical simulations, we show that the nonmonotonic behavior of vcðNÞ is due to the crossover from a compressible to an incompressible regime, where the collisional dynamics is governed by different energy scales, i.e., the droplet binding energy and the surface tension. These results also provide the first evidence of the liquidlike nature of quantum droplets in the large N limit, where their behavior closely resembles that of classical liquid droplets.File | Dimensione | Formato | |
---|---|---|---|
PhysRevLett.122.090401(1).pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
474.92 kB
Formato
Adobe PDF
|
474.92 kB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.