This thesis concerns the use of local searches within global optimization algorithms. In particular, we focus our attention on the strategies to decide whether to start or not a local search from a starting point. More specifically, our aim is to avoid the waste of computational effort due to local searches which lead to already detected local minima or to local minimizers with a poor function value. Our clustering-based strategies can be easily used to solve large scale global optimization problems and to enhance the performance of any memetic algorithm in general.

Saving local searches in global optimization / Luca Tigli. - (2020).

Saving local searches in global optimization

Luca Tigli
2020

Abstract

This thesis concerns the use of local searches within global optimization algorithms. In particular, we focus our attention on the strategies to decide whether to start or not a local search from a starting point. More specifically, our aim is to avoid the waste of computational effort due to local searches which lead to already detected local minima or to local minimizers with a poor function value. Our clustering-based strategies can be easily used to solve large scale global optimization problems and to enhance the performance of any memetic algorithm in general.
2020
Fabio Schoen
ITALIA
Goal 9: Industry, Innovation, and Infrastructure
Luca Tigli
File in questo prodotto:
File Dimensione Formato  
PhD_Thesis.pdf

accesso aperto

Descrizione: PhD thesis, Saving local searches in global optimization
Tipologia: Tesi di dottorato
Licenza: Open Access
Dimensione 2.3 MB
Formato Adobe PDF
2.3 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1188596
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact