Acute tissue injury causes DNA damage and repair processes involving increased cell mitosis and polyploidization, leading to cell function alterations that may potentially drive cancer development. Here, we show that acute kidney injury (AKI) increased the risk for papillary renal cell carcinoma (pRCC) development and tumor relapse in humans as confirmed by data collected from several single-center and multicentric studies. Lineage tracing of tubular epithelial cells (TECs) after AKI induction and long-term follow-up in mice showed time-dependent onset of clonal papillary tumors in an adenoma-carcinoma sequence. Among AKI-related pathways, NOTCH1 overexpression in human pRCC associated with worse outcome and was specific for type 2 pRCC. Mice overexpressing NOTCH1 in TECs developed papillary adenomas and type 2 pRCCs, and AKI accelerated this process. Lineage tracing in mice identified single renal progenitors as the cell of origin of papillary tumors. Single-cell RNA sequencing showed that human renal progenitor transcriptome showed similarities to PT1, the putative cell of origin of human pRCC. Furthermore, NOTCH1 overexpression in cultured human renal progenitor cells induced tumor-like 3D growth. Thus, AKI can drive tumorigenesis from local tissue progenitor cells. In particular, we find that AKI promotes the development of pRCC from single progenitors through a classical adenoma-carcinoma sequence.
Acute kidney injury promotes development of papillary renal cell adenoma and carcinoma from renal progenitor cells / Peired AJ, Antonelli G, Angelotti ML, Allinovi M, Guzzi F, Sisti A, Semeraro R, Conte C, Mazzinghi B, Nardi S, Melica ME, De Chiara L, Lazzeri E, Lasagni L, Lottini T, Landini S, Giglio S, Mari A, Di Maida F, Antonelli A, Porpiglia F, Schiavina R, Ficarra V, Facchiano D, Gacci M, Serni S, Carini M, Netto GJ, Roperto RM, Magi A, Christiansen CF, Rotondi M, Liapis H, Anders HJ, Minervini A, Raspollini MR, Romagnani P.. - In: SCIENCE TRANSLATIONAL MEDICINE. - ISSN 1946-6242. - ELETTRONICO. - (2020), pp. 0-0.
Acute kidney injury promotes development of papillary renal cell adenoma and carcinoma from renal progenitor cells.
Peired AJ;Antonelli G;Allinovi M;Guzzi F;Sisti A;Semeraro R;Conte C;Nardi S;De Chiara L;Lazzeri E;Lasagni L;Lottini T;Landini S;Giglio S;Mari A;Di Maida F;Facchiano D;Gacci M;Serni S;Carini M;Magi A;Liapis H;Minervini A;Romagnani P.
2020
Abstract
Acute tissue injury causes DNA damage and repair processes involving increased cell mitosis and polyploidization, leading to cell function alterations that may potentially drive cancer development. Here, we show that acute kidney injury (AKI) increased the risk for papillary renal cell carcinoma (pRCC) development and tumor relapse in humans as confirmed by data collected from several single-center and multicentric studies. Lineage tracing of tubular epithelial cells (TECs) after AKI induction and long-term follow-up in mice showed time-dependent onset of clonal papillary tumors in an adenoma-carcinoma sequence. Among AKI-related pathways, NOTCH1 overexpression in human pRCC associated with worse outcome and was specific for type 2 pRCC. Mice overexpressing NOTCH1 in TECs developed papillary adenomas and type 2 pRCCs, and AKI accelerated this process. Lineage tracing in mice identified single renal progenitors as the cell of origin of papillary tumors. Single-cell RNA sequencing showed that human renal progenitor transcriptome showed similarities to PT1, the putative cell of origin of human pRCC. Furthermore, NOTCH1 overexpression in cultured human renal progenitor cells induced tumor-like 3D growth. Thus, AKI can drive tumorigenesis from local tissue progenitor cells. In particular, we find that AKI promotes the development of pRCC from single progenitors through a classical adenoma-carcinoma sequence.File | Dimensione | Formato | |
---|---|---|---|
aaw6003_Accepted version with figures.pdf
Open Access dal 26/09/2020
Descrizione: Final review version of the manuscript. Edited version is available at Science Translational Medicine 25 Mar 2020: Vol. 12, Issue 536, eaaw6003 DOI: 10.1126/scitranslmed.aaw6003
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Creative commons
Dimensione
2.96 MB
Formato
Adobe PDF
|
2.96 MB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.