Bone tumor resections have to be carefully planned in order to avoid intralesional cuts and thus lower the recurrence rate. Until the present-day bone resections have been performed freehand, using anatomical landmarks as reference points to retrieve planned resection planes over the very patient. Such method is highly prone to failure to the detriment of the patient’s health, in fact survival rate for osteosarcomas is very low, ranging between 20% and 47%. The clinical outcome is highly dependent on the resections’ accuracy; several emerging techniques proved to dramatically increase cutting accuracy, as well as survival rate, in particular Patient Specific Instruments (PSIs) and custom 3D printed metal prosthesis. The main limitation to a massive spread of this method is the large manufacturing time due to a lack of communication between surgeons and engineers about the surgical approach and the design constraints. This paper aims to compare several general-purpose low-cost software and to provide surgeons with an effective and easy to use platform to visually share information in a natural manner with engineers thus providing as many design constraints as possible, speed up the design process and avoid unfeasible results. Two surgeons from Azienda Ospedaliera Universitaria Careggi tested and evaluated a series of software. From this preliminary investigation Forger, a digital sculpting and texture painting application for iOS, resulted as the most user friendly and intuitive application among the test group.

3D Digital Surgical Planning: An Investigation of Low-Cost Software Tools for Concurrent Design / Buonamici F.; Guariento L.; Volpe Y.. - ELETTRONICO. - (2020), pp. 765-775. [10.1007/978-3-030-31154-4_65]

3D Digital Surgical Planning: An Investigation of Low-Cost Software Tools for Concurrent Design

Buonamici F.;Guariento L.;Volpe Y.
2020

Abstract

Bone tumor resections have to be carefully planned in order to avoid intralesional cuts and thus lower the recurrence rate. Until the present-day bone resections have been performed freehand, using anatomical landmarks as reference points to retrieve planned resection planes over the very patient. Such method is highly prone to failure to the detriment of the patient’s health, in fact survival rate for osteosarcomas is very low, ranging between 20% and 47%. The clinical outcome is highly dependent on the resections’ accuracy; several emerging techniques proved to dramatically increase cutting accuracy, as well as survival rate, in particular Patient Specific Instruments (PSIs) and custom 3D printed metal prosthesis. The main limitation to a massive spread of this method is the large manufacturing time due to a lack of communication between surgeons and engineers about the surgical approach and the design constraints. This paper aims to compare several general-purpose low-cost software and to provide surgeons with an effective and easy to use platform to visually share information in a natural manner with engineers thus providing as many design constraints as possible, speed up the design process and avoid unfeasible results. Two surgeons from Azienda Ospedaliera Universitaria Careggi tested and evaluated a series of software. From this preliminary investigation Forger, a digital sculpting and texture painting application for iOS, resulted as the most user friendly and intuitive application among the test group.
2020
978-3-030-31153-7
978-3-030-31154-4
Lecture Notes in Mechanical Engineering
765
775
Buonamici F.; Guariento L.; Volpe Y.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1191721
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 0
social impact