Actin cytoskeleton was discovered some 70 years ago, and it is well known to be responsible for cellular transport phenomena and contractilities, with animal muscles representing the most obvious example. This ancient cytoskeletal system is present in all eukaryotic cells, responsible for all kinds of intracellular motilities. For example, the synaptic vesicle recycling also relies on the actin cytoskeleton, which supports all types of membranes structurally and functionally. Action potentials are fundamental for the long-distance signaling in both animals and plants. Although it is not generally appreciated, action potentials are mechanistically and functionally interlinked with the actin cytoskeleton associated with membranes. In both animals and plants, the inherent bioelectricity of membranes is closely linked with the actin cytoskeleton. Despite the fundamental importance of this phenomenon, it remains to be under-investigated, and future studies will be needed to illuminate the elusive electrochemical and bioelectric nature of cellular life.

Actin Cytoskeleton and Action Potentials: Forgotten Connections / Baluska F.; Mancuso S.. - STAMPA. - (2019), pp. 63-83. [10.1007/978-3-030-33528-1_5]

Actin Cytoskeleton and Action Potentials: Forgotten Connections

Baluska F.;Mancuso S.
2019

Abstract

Actin cytoskeleton was discovered some 70 years ago, and it is well known to be responsible for cellular transport phenomena and contractilities, with animal muscles representing the most obvious example. This ancient cytoskeletal system is present in all eukaryotic cells, responsible for all kinds of intracellular motilities. For example, the synaptic vesicle recycling also relies on the actin cytoskeleton, which supports all types of membranes structurally and functionally. Action potentials are fundamental for the long-distance signaling in both animals and plants. Although it is not generally appreciated, action potentials are mechanistically and functionally interlinked with the actin cytoskeleton associated with membranes. In both animals and plants, the inherent bioelectricity of membranes is closely linked with the actin cytoskeleton. Despite the fundamental importance of this phenomenon, it remains to be under-investigated, and future studies will be needed to illuminate the elusive electrochemical and bioelectric nature of cellular life.
2019
978-3-030-33528-1
The Cytoskeleton
63
83
Baluska F.; Mancuso S.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1193260
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? ND
social impact