We consider the space Lip(S^{n-1}) of Lipschitz functions defined on the unit sphere. We prove a characterization result for valuations on Lip(S^{n-1}) which are continuous and invariant under rotations and under the addition of linear functions. We also study valuations on Lip(S^1) which are just continuous and rotation invariant and we prove an integral representation for them. As a corollary, we obtain a characterization result for all uniformly continuous and rotation invariant valuations on Lip(S^1).

Valuations on Lipschitz functions / Daniele Pagnini. - (2020).

Valuations on Lipschitz functions

Daniele Pagnini
2020

Abstract

We consider the space Lip(S^{n-1}) of Lipschitz functions defined on the unit sphere. We prove a characterization result for valuations on Lip(S^{n-1}) which are continuous and invariant under rotations and under the addition of linear functions. We also study valuations on Lip(S^1) which are just continuous and rotation invariant and we prove an integral representation for them. As a corollary, we obtain a characterization result for all uniformly continuous and rotation invariant valuations on Lip(S^1).
2020
Prof. Andrea Colesanti
ITALIA
Daniele Pagnini
File in questo prodotto:
File Dimensione Formato  
PhD thesis.pdf

accesso aperto

Descrizione: Tesi di dottorato
Tipologia: Tesi di dottorato
Licenza: Open Access
Dimensione 716.06 kB
Formato Adobe PDF
716.06 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1195454
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact