We extend an inequality for harmonic functions, obtained by the same authors, to the case of solutions of uniformly elliptic equations in divergence form, with merely measurable coefficients. The inequality for harmonic functions turned out to be a crucial ingredient in the study of the stability of the radial symmetry for Alexandrov’s Soap Bubble Theorem and Serrin’s problem. The proof of our inequality is based on a mean value property for elliptic operators stated and proved in two papers by L. A. Caffarelli and by I. Blank and Z.Hao..

An interpolating inequality for solutions of uniformly elliptic equations / Rolando Magnanini; Giorgio Poggesi. - STAMPA. - (2021), pp. 233-245. [10.1007/978-3-030-73363-6_11]

An interpolating inequality for solutions of uniformly elliptic equations

Rolando Magnanini
;
Giorgio Poggesi
2021

Abstract

We extend an inequality for harmonic functions, obtained by the same authors, to the case of solutions of uniformly elliptic equations in divergence form, with merely measurable coefficients. The inequality for harmonic functions turned out to be a crucial ingredient in the study of the stability of the radial symmetry for Alexandrov’s Soap Bubble Theorem and Serrin’s problem. The proof of our inequality is based on a mean value property for elliptic operators stated and proved in two papers by L. A. Caffarelli and by I. Blank and Z.Hao..
2021
978-3-030-73362-9
Geometric Properties for Parabolic and Elliptic PDE's
233
245
Goal 17: Partnerships for the goals
Rolando Magnanini; Giorgio Poggesi
File in questo prodotto:
File Dimensione Formato  
MagnaniniPoggesiArx2002.04332v2.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Open Access
Dimensione 166.57 kB
Formato Adobe PDF
166.57 kB Adobe PDF
ReprintINdAMSeries2021.pdf

Accesso chiuso

Descrizione: ReprintINdAMSeries2021.pdf
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 603.2 kB
Formato Adobe PDF
603.2 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1211433
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact