Purpose: This study aims to carry out an investigation of design approaches that should be used for the design of unconventional, innovative transmission system for construction yards to privilege a smooth behaviour efficiency, and the use of innovative production techniques. Results are quite surprising, as with a proper method it is possible to demonstrate that a cycloidal drive with Wolfrom topology should be an interesting solution for the proposed application. Design/methodology/approach: With a functional approach, also considering materials and specifications related to the investigated application, it is possible to demonstrate that possible optimal solutions should be quite different respect to the ones that can be suggested with a conventional approach. In particular for proposed applications constraints related to encumbrances, the choice of new material has led to the innovative unconventional choice of a Wolfrom cycloidal speed reducer. Findings: Provided solution is innovative respect current state of the art for machine currently used in construction yards: in terms of adopted transmission layout; in terms of chosen materials, resulting in an innovative solution. Research limitations/implications: Current research has strong implications on the adoption of polimeric materials for the construction of reliable transmission for harsh industrial environment as the proposed case study (concrete mixer for construction yard). Originality/value: Proposed transmission system is absolutely original and innovative respect current state of art also considering proposed materials and consequently production methods. This is an example of transmission designed to be built with polymeric materials by optimizing chosen topology respect to chosen material.

Redesigning the cycloidal drive for innovative applications in machines for smart construction yards / Allotta B.; Fiorineschi L.; Papini S.; Pugi L.; Rotini F.; Rindi A.. - In: WORLD JOURNAL OF ENGINEERING. - ISSN 1708-5284. - ELETTRONICO. - 18:(2021), pp. 302-315. [10.1108/WJE-02-2020-0050]

Redesigning the cycloidal drive for innovative applications in machines for smart construction yards

Allotta B.;Fiorineschi L.;Papini S.;Pugi L.;Rotini F.;Rindi A.
2021

Abstract

Purpose: This study aims to carry out an investigation of design approaches that should be used for the design of unconventional, innovative transmission system for construction yards to privilege a smooth behaviour efficiency, and the use of innovative production techniques. Results are quite surprising, as with a proper method it is possible to demonstrate that a cycloidal drive with Wolfrom topology should be an interesting solution for the proposed application. Design/methodology/approach: With a functional approach, also considering materials and specifications related to the investigated application, it is possible to demonstrate that possible optimal solutions should be quite different respect to the ones that can be suggested with a conventional approach. In particular for proposed applications constraints related to encumbrances, the choice of new material has led to the innovative unconventional choice of a Wolfrom cycloidal speed reducer. Findings: Provided solution is innovative respect current state of the art for machine currently used in construction yards: in terms of adopted transmission layout; in terms of chosen materials, resulting in an innovative solution. Research limitations/implications: Current research has strong implications on the adoption of polimeric materials for the construction of reliable transmission for harsh industrial environment as the proposed case study (concrete mixer for construction yard). Originality/value: Proposed transmission system is absolutely original and innovative respect current state of art also considering proposed materials and consequently production methods. This is an example of transmission designed to be built with polymeric materials by optimizing chosen topology respect to chosen material.
2021
18
302
315
Goal 9: Industry, Innovation, and Infrastructure
Allotta B.; Fiorineschi L.; Papini S.; Pugi L.; Rotini F.; Rindi A.
File in questo prodotto:
File Dimensione Formato  
10-1108_WJE-02-2020-0050.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 2.78 MB
Formato Adobe PDF
2.78 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1218414
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact