In this study, diverse series of coumarin derivatives were developed as potential carbonic anhydrase inhibitors (CAIs). A “tail” approach was adopted by selecting the coumarin motif as a tail that is connected to the ZBG benzenesulfonamide moiety via a hydrazine (4a,b) or hydrazide (5a,b) linker. Thereafter, an aryl sulfone tail was incorporated to afford the dual tailed coumarin-sulfonamide arylsulfonehydrazones (13a-d) and hydrazides (14a,b). Then, the ZBG were removed from compounds 13 and 14 to furnish coumarin arylsulfonehydrazones (11a-d) and hydrazides (12a,b). Coumarin-sulfonamides 4 and 5 emerged as non-selective CAIs as they displayed good inhibitory activities toward all the examined CA isozymes (I, II, IX and XII) in the nanomolar ranges. Interestingly, the “dual-tail” approach (compounds 13 and 14) succeeded in achieving a good activity and selectivity toward CA IX/XII over the physiologically dominant CA I/II. In particular, compounds 13d and 14a were the most selective coumarin-sulfonamide counterparts. Concerning non-sulfonamide coumarin derivatives, coumarins 8 exhibited excellent activity and selectivity profiles against the target hCA IX/XII, whereas, coumarins 11 and 12 reported excellent selectivity profile, but they barely inhibited hCA IX/XII with KIs spanning in the micromolar ranges. Furthermore, molecular modelling studies were applied to get a deep focus about the feasible affinities and binding interactions for target coumarin-sulfonamides 4, 5, 13 and 14 with the active site for CA II, IX and XII isoforms.

Novel 3-substituted coumarins as selective human carbonic anhydrase IX and XII inhibitors: Synthesis, biological and molecular dynamics analysis / Abdelrahman M.A.; Ibrahim H.S.; Nocentini A.; Eldehna W.M.; Bonardi A.; Abdel-Aziz H.A.; Gratteri P.; Abou-Seri S.M.; Supuran C.T.. - In: EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY. - ISSN 0223-5234. - ELETTRONICO. - 209:(2021), pp. 0-0. [10.1016/j.ejmech.2020.112897]

Novel 3-substituted coumarins as selective human carbonic anhydrase IX and XII inhibitors: Synthesis, biological and molecular dynamics analysis

Nocentini A.;Bonardi A.;Gratteri P.;Supuran C. T.
2021

Abstract

In this study, diverse series of coumarin derivatives were developed as potential carbonic anhydrase inhibitors (CAIs). A “tail” approach was adopted by selecting the coumarin motif as a tail that is connected to the ZBG benzenesulfonamide moiety via a hydrazine (4a,b) or hydrazide (5a,b) linker. Thereafter, an aryl sulfone tail was incorporated to afford the dual tailed coumarin-sulfonamide arylsulfonehydrazones (13a-d) and hydrazides (14a,b). Then, the ZBG were removed from compounds 13 and 14 to furnish coumarin arylsulfonehydrazones (11a-d) and hydrazides (12a,b). Coumarin-sulfonamides 4 and 5 emerged as non-selective CAIs as they displayed good inhibitory activities toward all the examined CA isozymes (I, II, IX and XII) in the nanomolar ranges. Interestingly, the “dual-tail” approach (compounds 13 and 14) succeeded in achieving a good activity and selectivity toward CA IX/XII over the physiologically dominant CA I/II. In particular, compounds 13d and 14a were the most selective coumarin-sulfonamide counterparts. Concerning non-sulfonamide coumarin derivatives, coumarins 8 exhibited excellent activity and selectivity profiles against the target hCA IX/XII, whereas, coumarins 11 and 12 reported excellent selectivity profile, but they barely inhibited hCA IX/XII with KIs spanning in the micromolar ranges. Furthermore, molecular modelling studies were applied to get a deep focus about the feasible affinities and binding interactions for target coumarin-sulfonamides 4, 5, 13 and 14 with the active site for CA II, IX and XII isoforms.
2021
209
0
0
Goal 3: Good health and well-being for people
Abdelrahman M.A.; Ibrahim H.S.; Nocentini A.; Eldehna W.M.; Bonardi A.; Abdel-Aziz H.A.; Gratteri P.; Abou-Seri S.M.; Supuran C.T.
File in questo prodotto:
File Dimensione Formato  
128.Abdelrahman_EJMC21_coumarine.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 2.32 MB
Formato Adobe PDF
2.32 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1218488
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 46
  • ???jsp.display-item.citation.isi??? 44
social impact