We consider the problem of nonparametrically estimating a circular density from data contaminated by angular measurement errors. Specifically, we obtain a kernel-type estimator with weight functions that are reminiscent of deconvolution kernels. Here, differently from the Euclidean setting, discrete Fourier coefficients are involved rather than characteristic functions. We provide some simulation results along with a real data application.

Kernel Circular Deconvolution Density Estimation / Marco Di Marzio, Stefania Fensore, Agnese Panzera, Charles C. Taylor. - STAMPA. - (2020), pp. 183-191. [10.1007/978-3-030-57306-5_17]

Kernel Circular Deconvolution Density Estimation

Agnese Panzera;
2020

Abstract

We consider the problem of nonparametrically estimating a circular density from data contaminated by angular measurement errors. Specifically, we obtain a kernel-type estimator with weight functions that are reminiscent of deconvolution kernels. Here, differently from the Euclidean setting, discrete Fourier coefficients are involved rather than characteristic functions. We provide some simulation results along with a real data application.
2020
978-3-030-57305-8
Nonparametric Statistics. ISNPS 2018. Springer Proceedings in Mathematics & Statistics.
183
191
Marco Di Marzio, Stefania Fensore, Agnese Panzera, Charles C. Taylor
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1219657
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact