While most animals have a sense of number, only humans have developed symbolic systems to describe and organize mathematical knowledge. Some studies suggest that human arithmetical knowledge may be rooted in an ancient mechanism dedicated to perceiving numerosity, but it is not known if formal geometry also relies on basic, non-symbolic mechanisms. Here we show that primary-school children who spontaneously detect and predict geometrical sequences (non-symbolic geometry) perform better in school-based geometry tests indexing formal geometric knowledge. Interestingly, numerosity discrimination thresholds also predicted and explained a specific portion of variance of formal geometrical scores. The relation between these two non-symbolic systems and formal geometry was not explained by age or verbal reasoning skills. Overall, the results are in line with the hypothesis that some human-specific, symbolic systems are rooted in non-symbolic mechanisms.

Perception of geometric sequences and numerosity both predict formal geometric competence in primary school children / Castaldi E.; Arrighi R.; Cicchini G.M.; Andolfi A.; Maduli G.; Burr D.C.; Anobile G.. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - ELETTRONICO. - 11:(2021), pp. 0-0. [10.1038/s41598-021-93710-x]

Perception of geometric sequences and numerosity both predict formal geometric competence in primary school children

Castaldi E.;Arrighi R.
;
Maduli G.;Burr D. C.;Anobile G.
2021

Abstract

While most animals have a sense of number, only humans have developed symbolic systems to describe and organize mathematical knowledge. Some studies suggest that human arithmetical knowledge may be rooted in an ancient mechanism dedicated to perceiving numerosity, but it is not known if formal geometry also relies on basic, non-symbolic mechanisms. Here we show that primary-school children who spontaneously detect and predict geometrical sequences (non-symbolic geometry) perform better in school-based geometry tests indexing formal geometric knowledge. Interestingly, numerosity discrimination thresholds also predicted and explained a specific portion of variance of formal geometrical scores. The relation between these two non-symbolic systems and formal geometry was not explained by age or verbal reasoning skills. Overall, the results are in line with the hypothesis that some human-specific, symbolic systems are rooted in non-symbolic mechanisms.
2021
11
0
0
Castaldi E.; Arrighi R.; Cicchini G.M.; Andolfi A.; Maduli G.; Burr D.C.; Anobile G.
File in questo prodotto:
File Dimensione Formato  
Perception of geometric sequences and numerosity both predict formal geometric competence in primary school children.pdf

accesso aperto

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Open Access
Dimensione 1.05 MB
Formato Adobe PDF
1.05 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1241850
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact