Assuming Schanuel’s Conjecture we prove that for any irreducible variety V ⊆ ℂn × (ℂ*)n over ℚalg, of dimension n, and with dominant projections on both the first n coordinates and the last n coordinates, there exists a generic point (a¯ , ea¯) ∈ V. We obtain in this way many instances of the Strong Exponential Closure axiom introduced by Zilber in [20].
A weak version of the strong exponential closure / D'Aquino P.; Fornasiero A.; Terzo G.. - In: ISRAEL JOURNAL OF MATHEMATICS. - ISSN 0021-2172. - ELETTRONICO. - 242:(2021), pp. 697-705. [10.1007/s11856-021-2141-1]
A weak version of the strong exponential closure
Fornasiero A.;
2021
Abstract
Assuming Schanuel’s Conjecture we prove that for any irreducible variety V ⊆ ℂn × (ℂ*)n over ℚalg, of dimension n, and with dominant projections on both the first n coordinates and the last n coordinates, there exists a generic point (a¯ , ea¯) ∈ V. We obtain in this way many instances of the Strong Exponential Closure axiom introduced by Zilber in [20].File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
weak-exponential-closure_arxiv.pdf
accesso aperto
Descrizione: Versione ArXiv
Tipologia:
Preprint (Submitted version)
Licenza:
Open Access
Dimensione
175.91 kB
Formato
Adobe PDF
|
175.91 kB | Adobe PDF | |
exponential-closure_DFT_IJM-21.pdf
Accesso chiuso
Descrizione: Versione editore
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Solo lettura
Dimensione
187.84 kB
Formato
Adobe PDF
|
187.84 kB | Adobe PDF | Richiedi una copia |
SEClastrev.pdf
accesso aperto
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Open Access
Dimensione
343.86 kB
Formato
Adobe PDF
|
343.86 kB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.