An exponential increase of scientific works dealing with the use of polyphenol-rich ‘natural products’ for the synthesis of bioactive AgNPs is in progress. However, a lack of fundamental studies on phytochemical compounds involved, and their role is evident. In this work, a comprehensive study of the antifungal performances of silver nanoparticles (AgNPs) synthesized exclusively with phenolic compounds (PCs) with different structures and different antioxidant capacity is presented. The experimental hypothesis is that AgNPs@PCs produced with different PCs can exert different toxicity. In particular, di-hydroxylic and tri-hydroxylic phenolic acids (caffeic acid and gallic acid) and flavonoids (catechin and myricetin) were compared. A room temperature rapid and simple AgNPs synthesis was carefully optimized, obtaining stable and reproducible colloids. AgNPs@PCs suspensions were characterized by UV–vis spectroscopy, ς-potential, dynamic light scattering and transmission electron microscopy. AgNPs@PCs radical scavenging capacity was also assessed. Finally, the AgNPs@PCs antifungal effect was tested against Aspergillus niger, particularly on spore germination and mycelial growth. The different antifungal activity was attributed to the different PCs' ability to generate/stabilize AgNPs with different shells, residual antioxidant capacity, and capacity to interact and aggregate during their 'attack' to A. niger hyphae. This work paves the way for the rational use of PCs and PCs rich-products for AgNPs-based applications.

Effect of phenolic compounds-capped AgNPs on growth inhibition of Aspergillus niger / Scroccarello A.; Molina-Hernandez B.; Della Pelle F.; Ciancetta J.; Ferraro G.; Fratini E.; Valbonetti L.; Chaves Copez C.; Compagnone D.. - In: COLLOIDS AND SURFACES. B, BIOINTERFACES. - ISSN 0927-7765. - ELETTRONICO. - 199:(2021), pp. 0-0. [10.1016/j.colsurfb.2020.111533]

Effect of phenolic compounds-capped AgNPs on growth inhibition of Aspergillus niger

Ferraro G.;Fratini E.;
2021

Abstract

An exponential increase of scientific works dealing with the use of polyphenol-rich ‘natural products’ for the synthesis of bioactive AgNPs is in progress. However, a lack of fundamental studies on phytochemical compounds involved, and their role is evident. In this work, a comprehensive study of the antifungal performances of silver nanoparticles (AgNPs) synthesized exclusively with phenolic compounds (PCs) with different structures and different antioxidant capacity is presented. The experimental hypothesis is that AgNPs@PCs produced with different PCs can exert different toxicity. In particular, di-hydroxylic and tri-hydroxylic phenolic acids (caffeic acid and gallic acid) and flavonoids (catechin and myricetin) were compared. A room temperature rapid and simple AgNPs synthesis was carefully optimized, obtaining stable and reproducible colloids. AgNPs@PCs suspensions were characterized by UV–vis spectroscopy, ς-potential, dynamic light scattering and transmission electron microscopy. AgNPs@PCs radical scavenging capacity was also assessed. Finally, the AgNPs@PCs antifungal effect was tested against Aspergillus niger, particularly on spore germination and mycelial growth. The different antifungal activity was attributed to the different PCs' ability to generate/stabilize AgNPs with different shells, residual antioxidant capacity, and capacity to interact and aggregate during their 'attack' to A. niger hyphae. This work paves the way for the rational use of PCs and PCs rich-products for AgNPs-based applications.
2021
199
0
0
Goal 6: Clean water and sanitation
Scroccarello A.; Molina-Hernandez B.; Della Pelle F.; Ciancetta J.; Ferraro G.; Fratini E.; Valbonetti L.; Chaves Copez C.; Compagnone D.
File in questo prodotto:
File Dimensione Formato  
2021CSB_AgAspegillusNiger.pdf

Accesso chiuso

Descrizione: Articolo principale
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 4.26 MB
Formato Adobe PDF
4.26 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1256177
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 19
social impact