Structural health monitoring (SHM) has been recognized as a useful tool for experimentally assessing the structural behavior of historical buildings over time. If monitoring is performed continuously and for a long time, it allows to evaluate variations in the building’s dynamic response to external factors. The main goal is to estimate the dynamic response of the monitored buildings to daily stresses produced by environmental and anthropogenic factors (variations in ambient temperature and humidity, wind velocity, vibrations produced by vehicular traffic or other anthropogenic noise sources including visitors, service staff, etc.) to distinguish ordinary fluctuations in the buildings’ response from other anomalous behavior. Continuous monitoring also makes it possible to assess the impact of extraordinary events such as extreme weather events, earthquakes, excavations, cultural events involving many people nearby the monitored buildings. Some examples from the authors’ many monitoring campaigns on monuments located in different urban environments are presented. In particular, the effect on one of the monitored buildings of the drastic reduction of seismic noise during the SarsCov2 pandemic lockdown is investigated.

Structural Health Monitoring for Architectural Heritage: Case Studies in Central Italy / Azzara R.M.; Girardi M.; Occhipinti M.; Padovani C.; Pellegrini D.; Tanganelli M.. - ELETTRONICO. - (2023), pp. 3-12. [10.1007/978-3-031-07254-3_1]

Structural Health Monitoring for Architectural Heritage: Case Studies in Central Italy

Azzara R. M.
;
Tanganelli M.
2023

Abstract

Structural health monitoring (SHM) has been recognized as a useful tool for experimentally assessing the structural behavior of historical buildings over time. If monitoring is performed continuously and for a long time, it allows to evaluate variations in the building’s dynamic response to external factors. The main goal is to estimate the dynamic response of the monitored buildings to daily stresses produced by environmental and anthropogenic factors (variations in ambient temperature and humidity, wind velocity, vibrations produced by vehicular traffic or other anthropogenic noise sources including visitors, service staff, etc.) to distinguish ordinary fluctuations in the buildings’ response from other anomalous behavior. Continuous monitoring also makes it possible to assess the impact of extraordinary events such as extreme weather events, earthquakes, excavations, cultural events involving many people nearby the monitored buildings. Some examples from the authors’ many monitoring campaigns on monuments located in different urban environments are presented. In particular, the effect on one of the monitored buildings of the drastic reduction of seismic noise during the SarsCov2 pandemic lockdown is investigated.
2023
978-3-031-07253-6
978-3-031-07254-3
Lecture Notes in Civil Engineering
3
12
Azzara R.M.; Girardi M.; Occhipinti M.; Padovani C.; Pellegrini D.; Tanganelli M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1280041
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact