The mechanical behaviour of structural components subjected to multiaxial fatigue loading is very important in modern design. Several approaches have been introduced in recent decades to analyse this problem. The so-called critical plane approach, based on the stresses acting on the plane where the crack nucleation is expected to occur, is widely used. This criterion can give us a fatigue damage measurement, which can be used to evaluate fatigue life. On the other hand, fatigue life under general multiaxial stress histories can also be assessed by applying the damage accumulation method. In such a method, a scalar damage parameter is quantified through the damage increments which develop during the fatigue process up to the critical damage value corresponding to the final failure of the structures. The damage increment approach to fatigue has recently been discussed and connected to the classical crack propagation approach. In the present paper, the interpretation of the critical plane approach based on the continuum damage mechanics concepts is examined. In particular, the physical meaning of the critical plane approach is shown, that is, such an approach can be interpreted as a damage method which takes into account the scalar damage parameter evaluated along preferential directions. Finally, the fatigue behaviour of a metallic material under multiaxial cyclic load histories is analysed through the two above approaches.
Damage Mechanics and Critical Plane Approach to Multiaxial Fatigue / BRIGHENTI, Roberto; CARPINTERI, Andrea. - STAMPA. - (2014), pp. 239-245. [10.4028/www.scientific.net/KEM.592-593.239]
Damage Mechanics and Critical Plane Approach to Multiaxial Fatigue
BRIGHENTI, Roberto;
2014
Abstract
The mechanical behaviour of structural components subjected to multiaxial fatigue loading is very important in modern design. Several approaches have been introduced in recent decades to analyse this problem. The so-called critical plane approach, based on the stresses acting on the plane where the crack nucleation is expected to occur, is widely used. This criterion can give us a fatigue damage measurement, which can be used to evaluate fatigue life. On the other hand, fatigue life under general multiaxial stress histories can also be assessed by applying the damage accumulation method. In such a method, a scalar damage parameter is quantified through the damage increments which develop during the fatigue process up to the critical damage value corresponding to the final failure of the structures. The damage increment approach to fatigue has recently been discussed and connected to the classical crack propagation approach. In the present paper, the interpretation of the critical plane approach based on the continuum damage mechanics concepts is examined. In particular, the physical meaning of the critical plane approach is shown, that is, such an approach can be interpreted as a damage method which takes into account the scalar damage parameter evaluated along preferential directions. Finally, the fatigue behaviour of a metallic material under multiaxial cyclic load histories is analysed through the two above approaches.File | Dimensione | Formato | |
---|---|---|---|
62J_149_KEM.592-593.239.pdf
Accesso chiuso
Licenza:
Tutti i diritti riservati
Dimensione
868.86 kB
Formato
Adobe PDF
|
868.86 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.