In the context of textual analysis, network-based procedures for topic detection are gaining attention as an alternative to classical topic models. Network-based procedures are based on the idea that documents can be represented asword cooccurrence networks, where topics are defined as groups of strongly connected-words. Although many works have used network-based procedures for topic detection, there is a lack of systematic analysis of how different design choices, such as the building of the word co-occurrence matrix and the selection of the community detection algorithm, affect the final results in terms of detected topics. In this work, we present the results obtained by analysing a widely used corpus of news articles, showing how and to what extent the choices made during the design phase affect the results.
Robustness and Sensitivity of Network-Based Topic Detection / Galluccio, C.; Magnani, M.; Vega, D.; Ragozini, G.; Petrucci, A.. - STAMPA. - 1078:(2023), pp. 259-270. [10.1007/978-3-031-21131-7_20]
Robustness and Sensitivity of Network-Based Topic Detection
Galluccio, C.
;Petrucci, A.
2023
Abstract
In the context of textual analysis, network-based procedures for topic detection are gaining attention as an alternative to classical topic models. Network-based procedures are based on the idea that documents can be represented asword cooccurrence networks, where topics are defined as groups of strongly connected-words. Although many works have used network-based procedures for topic detection, there is a lack of systematic analysis of how different design choices, such as the building of the word co-occurrence matrix and the selection of the community detection algorithm, affect the final results in terms of detected topics. In this work, we present the results obtained by analysing a widely used corpus of news articles, showing how and to what extent the choices made during the design phase affect the results.I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.