Masonry arches and vaults are common historic structural elements that frequently experience asymmetric loading due to seismic action or abutment settlements. Over the past few decades, numerous studies have sought to enhance our understanding of the structural behavior of these elements for the purpose of preventive conservation. The assessment of the structural performance of existing constructions typically relies on effective numerical models guided by a set of unknown input parameters, including geometry, mechanical characteristics, physical properties, and boundary conditions. These parameters can be estimated through deterministic optimization functions aimed at minimizing the discrepancy between the output of a numerical model and the measured dynamic and/or static structural response. However, deterministic approaches overlook uncertainties associated with both input parameters and measurements. In this context, the Bayesian approach proves valuable for estimating unknown numerical model parameters and their associated uncertainties (posterior distributions). This involves updating prior knowledge of model parameters (prior distributions) based on current measurements and explicitly considering all sources of uncertainties affecting observed quantities through likelihood functions. However, two significant challenges arise: the likelihood function may be unknown or too complex to evaluate, and the computational costs for approximating the posterior distribution can be prohibitive. This study addresses these challenges by employing Approximate Bayesian Computation (ABC) to handle the intractable likelihood function. Additionally, the computational burden is mitigated through the use of accurate surrogate models such as Polynomial Chaos Expansions (PCE) and Artificial Neural Networks (ANN). The research focuses on setting up numerical models for simple structural systems (tie-rods) and inferring unknown input parameters, such as mechanical properties and boundary conditions, through Bayesian updating based on observed structural responses (modal data, strains, displacements). The main novelties of this research regard, on the one hand, the proposal of a methodology for obtaining a reliable estimate of the axial force in ancient tie-rods accounting for different sources of uncertainty and, on the other hand, the application of ABC to obtain the structural identification inverse problem solution.
Approximate Bayesian Computation for structural identification of ancient tie-rods using noisy modal data / Monchetti S.; Pepi C.; Viscardi C.; Gioffre M.. - In: PROBABILISTIC ENGINEERING MECHANICS. - ISSN 0266-8920. - ELETTRONICO. - 77:(2024), pp. 103674.0-103674.0. [10.1016/j.probengmech.2024.103674]
Approximate Bayesian Computation for structural identification of ancient tie-rods using noisy modal data
Monchetti S.;Viscardi C.;
2024
Abstract
Masonry arches and vaults are common historic structural elements that frequently experience asymmetric loading due to seismic action or abutment settlements. Over the past few decades, numerous studies have sought to enhance our understanding of the structural behavior of these elements for the purpose of preventive conservation. The assessment of the structural performance of existing constructions typically relies on effective numerical models guided by a set of unknown input parameters, including geometry, mechanical characteristics, physical properties, and boundary conditions. These parameters can be estimated through deterministic optimization functions aimed at minimizing the discrepancy between the output of a numerical model and the measured dynamic and/or static structural response. However, deterministic approaches overlook uncertainties associated with both input parameters and measurements. In this context, the Bayesian approach proves valuable for estimating unknown numerical model parameters and their associated uncertainties (posterior distributions). This involves updating prior knowledge of model parameters (prior distributions) based on current measurements and explicitly considering all sources of uncertainties affecting observed quantities through likelihood functions. However, two significant challenges arise: the likelihood function may be unknown or too complex to evaluate, and the computational costs for approximating the posterior distribution can be prohibitive. This study addresses these challenges by employing Approximate Bayesian Computation (ABC) to handle the intractable likelihood function. Additionally, the computational burden is mitigated through the use of accurate surrogate models such as Polynomial Chaos Expansions (PCE) and Artificial Neural Networks (ANN). The research focuses on setting up numerical models for simple structural systems (tie-rods) and inferring unknown input parameters, such as mechanical properties and boundary conditions, through Bayesian updating based on observed structural responses (modal data, strains, displacements). The main novelties of this research regard, on the one hand, the proposal of a methodology for obtaining a reliable estimate of the axial force in ancient tie-rods accounting for different sources of uncertainty and, on the other hand, the application of ABC to obtain the structural identification inverse problem solution.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0266892024000961-main.pdf
accesso aperto
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Creative commons
Dimensione
2.08 MB
Formato
Adobe PDF
|
2.08 MB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.