We consider in this note one-side Liouville properties for viscos- ity solutions of various fully nonlinear uniformly elliptic inequalities, whose prototype is F (x, D2u) ≥ Hi(x, u, Du) in RN , where Hi has superlinear growth in the gradient variable. After a brief survey on the existing literature, we discuss the validity or the failure of the Liouville property in the model cases H1(u,Du) = uq + |Du|γ, H2(u,Du) = uq|Du|γ and H3(x,u,Du) = ±uq|Du|γ − b(x) · Du, where q ≥ 0, γ > 1 and b is a suitable velocity field. Several counterexamples and open problems are thoroughly discussed.

On the Liouville property for fully nonlinear equations with superlinear first-order terms / Cirant, Marco; Goffi, Alessandro. - STAMPA. - 781:(2023), pp. 7-39. [10.1090/conm/781/15707]

On the Liouville property for fully nonlinear equations with superlinear first-order terms

Goffi, Alessandro
2023

Abstract

We consider in this note one-side Liouville properties for viscos- ity solutions of various fully nonlinear uniformly elliptic inequalities, whose prototype is F (x, D2u) ≥ Hi(x, u, Du) in RN , where Hi has superlinear growth in the gradient variable. After a brief survey on the existing literature, we discuss the validity or the failure of the Liouville property in the model cases H1(u,Du) = uq + |Du|γ, H2(u,Du) = uq|Du|γ and H3(x,u,Du) = ±uq|Du|γ − b(x) · Du, where q ≥ 0, γ > 1 and b is a suitable velocity field. Several counterexamples and open problems are thoroughly discussed.
2023
978-1-4704-7208-5
Proceedings of the conference on Geometric and Functional Inequalities and Recent Topics in Nonlinear PDEs
7
39
Cirant, Marco; Goffi, Alessandro
File in questo prodotto:
File Dimensione Formato  
paper_proc_CG_CONMAMS.pdf

accesso aperto

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Open Access
Dimensione 438.57 kB
Formato Adobe PDF
438.57 kB Adobe PDF
conm15707.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 448.18 kB
Formato Adobe PDF
448.18 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1383950
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact