Directed acyclic graphical models, or Bayesian networks, use a directed acyclic graph to represent the conditional independence relationships between a set of random variables. We introduce a novel class of Bayesian networks specifically designed for circular or angular variables, utilizing the properties of the von Mises distribution. We illustrate our proposal by applying these models to study the conditional independencies within a sequence of angles that characterize the structure of a glycopeptide.

Conditional von Mises Bayesian Networks / Gottard, Anna; Panzera, Agnese. - ELETTRONICO. - (2025), pp. 249-259. [10.1007/978-3-032-03042-9_22]

Conditional von Mises Bayesian Networks

Gottard, Anna
;
Panzera, Agnese
2025

Abstract

Directed acyclic graphical models, or Bayesian networks, use a directed acyclic graph to represent the conditional independence relationships between a set of random variables. We introduce a novel class of Bayesian networks specifically designed for circular or angular variables, utilizing the properties of the von Mises distribution. We illustrate our proposal by applying these models to study the conditional independencies within a sequence of angles that characterize the structure of a glycopeptide.
2025
9783032030412
9783032030429
Supervised and Unsupervised Statistical Data Analysis. CLADAG-VOC 2025
249
259
Gottard, Anna; Panzera, Agnese
File in questo prodotto:
File Dimensione Formato  
My978-3-032-03042-9 .pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 666.05 kB
Formato Adobe PDF
666.05 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1435574
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact