Classification of data observed with errors is a relevant topic which has still not been fully explored. We address this problem in the directional context and discuss two nonparametric approaches which rely on kernel estimation of circular densities. We provide some asymptotic L2 properties for the proposed methods, along with some simulation results.

Circular Kernel Classification with Errors in Variables / Marco Di Marzio; Stefania Fensore; Chiara Passamonti; Agnese Panzera. - STAMPA. - (2025), pp. 85-93. [10.1007/978-3-031-84702-8_10]

Circular Kernel Classification with Errors in Variables

Agnese Panzera
2025

Abstract

Classification of data observed with errors is a relevant topic which has still not been fully explored. We address this problem in the directional context and discuss two nonparametric approaches which rely on kernel estimation of circular densities. We provide some asymptotic L2 properties for the proposed methods, along with some simulation results.
2025
9783031847011
9783031847028
Statistical Models and Learning Methods for Complex Data
85
93
Marco Di Marzio; Stefania Fensore; Chiara Passamonti; Agnese Panzera
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1436690
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact