We prove a lower semicontinuity theorem for a polyconvex functional of integral form, related to vector-valued maps u in W^(1,n), with n >= m >= 2, with respect to the weak W(1,p)-convergence for p > m - 1, without assuming any coercivity condition.
Weak lower semicontinuity for non coercive polyconvex integrals / M. AMAR; V. DE CICCO; P. MARCELLINI; E. MASCOLO. - In: ADVANCES IN CALCULUS OF VARIATIONS. - ISSN 1864-8258. - STAMPA. - 1:(2008), pp. 171-191.
Weak lower semicontinuity for non coercive polyconvex integrals
MARCELLINI, PAOLO;MASCOLO, ELVIRA
2008
Abstract
We prove a lower semicontinuity theorem for a polyconvex functional of integral form, related to vector-valued maps u in W^(1,n), with n >= m >= 2, with respect to the weak W(1,p)-convergence for p > m - 1, without assuming any coercivity condition.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2008_Amar_DeCicco_Marcellini_Mascolo_-_reprint.pdf
Accesso chiuso
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Tutti i diritti riservati
Dimensione
249.14 kB
Formato
Adobe PDF
|
249.14 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.