Abstract - This is the first of a series of papers devoted to lay the foundations of Algebraic Geometry in homotopical and higher categorical contexts. In this first part we investigate a notion of higher topos. For this, we use S-categories (i.e. simplicially enriched categories) as models for certain kind of ∞-categories, and we develop the notions of S-topologies, S-sites and stacks over them. We prove in particular, that for an S-category T endowed with an S-topology, there exists a model category of stacks over T, generalizing the model category structure on simplicial presheaves over a Grothendieck site of Joyal and Jardine. We also prove some analogs of the relations between topologies and localizing subcategories of the categories of presheaves, by proving that there exists a one-to-one correspondence between S-topologies on an S-category T, and certain left exact Bousfield localizations of the model category of pre-stacks on T. Based on the above results, we study the notion of model topos introduced by Rezk, and we relate it to our model categories of stacks over S-sites. In the second part of the paper, we present a parallel theory where S-categories, S-topologies and S-sites are replaced by model categories, model topologies and model sites. We prove that a canonical way to pass from the theory of stacks over model sites to the theory of stacks over S-sites is provided by the simplicial localization construction of Dwyer and Kan. As an example of application, we propose a definition of étale K-theory of ring spectra, extending the étale K-theory of commutative rings.
Homotopical algebraic geometry I: Topos theory / G. VEZZOSI; B. TOEN. - In: ADVANCES IN MATHEMATICS. - ISSN 0001-8708. - STAMPA. - 193:(2005), pp. 257-372. [10.1016/j.aim.2004.05.004]
Homotopical algebraic geometry I: Topos theory
VEZZOSI, GABRIELE
;
2005
Abstract
Abstract - This is the first of a series of papers devoted to lay the foundations of Algebraic Geometry in homotopical and higher categorical contexts. In this first part we investigate a notion of higher topos. For this, we use S-categories (i.e. simplicially enriched categories) as models for certain kind of ∞-categories, and we develop the notions of S-topologies, S-sites and stacks over them. We prove in particular, that for an S-category T endowed with an S-topology, there exists a model category of stacks over T, generalizing the model category structure on simplicial presheaves over a Grothendieck site of Joyal and Jardine. We also prove some analogs of the relations between topologies and localizing subcategories of the categories of presheaves, by proving that there exists a one-to-one correspondence between S-topologies on an S-category T, and certain left exact Bousfield localizations of the model category of pre-stacks on T. Based on the above results, we study the notion of model topos introduced by Rezk, and we relate it to our model categories of stacks over S-sites. In the second part of the paper, we present a parallel theory where S-categories, S-topologies and S-sites are replaced by model categories, model topologies and model sites. We prove that a canonical way to pass from the theory of stacks over model sites to the theory of stacks over S-sites is provided by the simplicial localization construction of Dwyer and Kan. As an example of application, we propose a definition of étale K-theory of ring spectra, extending the étale K-theory of commutative rings.File | Dimensione | Formato | |
---|---|---|---|
AbstractHAGI.pdf
accesso aperto
Tipologia:
Altro
Licenza:
Open Access
Dimensione
52.64 kB
Formato
Adobe PDF
|
52.64 kB | Adobe PDF | |
HAGI.pdf
accesso aperto
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Open Access
Dimensione
920.27 kB
Formato
Adobe PDF
|
920.27 kB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.