In this paper we survey a series of recent developments in the theory of functions of a hypercomplex variable. The central idea underlying these developments consists in requiring a function to be holomorphic on suitable slices of the space on which the function itself is defined. Specifically, we apply this approach to functions defined on the space H of quaternions, on the space O of octonions, and finally on the Clifford algebra of type (0,3), denoted Cl(0, 3). The properties of these functions resemble those of holomorphic functions, and yet the different nature of the three algebras on which we work introduces new and exciting phenomena.

Recent developments for regular functions of a hypercomplex variable / Gentili, Graziano; Stoppato, Caterina; Struppa, Daniele C.; Vlacci, Fabio. - STAMPA. - (2009), pp. 165-186. [10.1007/978-3-7643-9893-4_11]

Recent developments for regular functions of a hypercomplex variable

GENTILI, GRAZIANO;STOPPATO, CATERINA;VLACCI, FABIO
2009

Abstract

In this paper we survey a series of recent developments in the theory of functions of a hypercomplex variable. The central idea underlying these developments consists in requiring a function to be holomorphic on suitable slices of the space on which the function itself is defined. Specifically, we apply this approach to functions defined on the space H of quaternions, on the space O of octonions, and finally on the Clifford algebra of type (0,3), denoted Cl(0, 3). The properties of these functions resemble those of holomorphic functions, and yet the different nature of the three algebras on which we work introduces new and exciting phenomena.
2009
9783764398927
Hypercomplex analysis
165
186
Gentili, Graziano; Stoppato, Caterina; Struppa, Daniele C.; Vlacci, Fabio
File in questo prodotto:
File Dimensione Formato  
a.Trends2009.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 393.63 kB
Formato Adobe PDF
393.63 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/336833
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 17
social impact