Dithiocarbamates (DTC) are promising compounds with potential applications in antitumoral and glaucoma therapy. Our aim is to understand molecular features affecting DTC interaction with carbonic anhydrases (CAs), zinc-containing enzymes maintaining acid-base balance in blood and other tissues. To this end, we generate QSAR models based on a compound series containing 25 DTC, inhibitors of four human (h) CAs isoforms: hCA I, II, IX and XII. We establish that critical physicochemical parameters for DTC inhibitory activity are: hydrophobic, electronic, steric, topological and shape. The predictive power of our QSAR models is indicated by significant values of statistical coefficients: cross-validated correlation q(2) (0.55-0.73), fitted correlation r(2) (0.75-0.84) and standard error of prediction (0.47-0.23). Based on the established QSAR equations, we analyse 22 new DTC derivatives and identify DTC dicarboxilic acids derivatives and their esters as potentially improved inhibitors of CA I, II, IX and XII.

More effective dithiocarbamate derivatives inhibiting carbonic anhydrases, generated by QSAR and computational design / S. Avram;A. L. Milac;F. Carta;C. T. Supuran. - In: JOURNAL OF ENZYME INHIBITION AND MEDICINAL CHEMISTRY. - ISSN 1475-6366. - STAMPA. - 28:(2012), pp. 350-359. [10.3109/14756366.2012.727410]

More effective dithiocarbamate derivatives inhibiting carbonic anhydrases, generated by QSAR and computational design.

CARTA, FABRIZIO;SUPURAN, CLAUDIU TRANDAFIR
2012

Abstract

Dithiocarbamates (DTC) are promising compounds with potential applications in antitumoral and glaucoma therapy. Our aim is to understand molecular features affecting DTC interaction with carbonic anhydrases (CAs), zinc-containing enzymes maintaining acid-base balance in blood and other tissues. To this end, we generate QSAR models based on a compound series containing 25 DTC, inhibitors of four human (h) CAs isoforms: hCA I, II, IX and XII. We establish that critical physicochemical parameters for DTC inhibitory activity are: hydrophobic, electronic, steric, topological and shape. The predictive power of our QSAR models is indicated by significant values of statistical coefficients: cross-validated correlation q(2) (0.55-0.73), fitted correlation r(2) (0.75-0.84) and standard error of prediction (0.47-0.23). Based on the established QSAR equations, we analyse 22 new DTC derivatives and identify DTC dicarboxilic acids derivatives and their esters as potentially improved inhibitors of CA I, II, IX and XII.
2012
28
350
359
S. Avram;A. L. Milac;F. Carta;C. T. Supuran
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/776400
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 20
social impact