We discuss kernel density estimation for data lying on the d-dimensional torus (d ≥ 1). We consider a specific class of product kernels, and formulate exact and asymptotic L 2 properties for the estimators equipped with these kernels. We also obtain the optimal smoothing for the case when the kernel is defined by the product of von Mises densities. A brief simulation study illustrates the main findings.

A Note on Density Estimation for Circular Data / Marco Di Marzio; Agnese Panzera; Charles C. Taylor. - STAMPA. - (2012), pp. 297-304. [10.1007/978-3-642-21037-2 27]

A Note on Density Estimation for Circular Data

PANZERA, AGNESE;
2012

Abstract

We discuss kernel density estimation for data lying on the d-dimensional torus (d ≥ 1). We consider a specific class of product kernels, and formulate exact and asymptotic L 2 properties for the estimators equipped with these kernels. We also obtain the optimal smoothing for the case when the kernel is defined by the product of von Mises densities. A brief simulation study illustrates the main findings.
2012
9783642210365
Advanced Statistical Methods for the Analysis of Large Data-Sets Studies in Theoretical and Applied Statistics 2012
297
304
Marco Di Marzio; Agnese Panzera; Charles C. Taylor
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/820934
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact