A commonly ignored problem in planar mosaics, yet often present in practice, is the selection of a reference homography reprojection frame where to attach the successive image frames of the mosaic. A bad choice for the reference frame can lead to severe distortions in the mosaic and can degenerate in incorrect configurations after some sequential frame concatenations. This problem is accentuated in uncontrolled underwater acquisition setups as those provided by AUVs or ROVs due to both the noisy trajectory of the acquisition vehicle – with roll and pitch shakes – and to the non-flat nature of the seabed which tends to break the planarity assumption implicit in the mosaic construction. These scenarios can also introduce other undesired effects, such as light variations between successive frames, scattering and attenuation, vignetting, flickering and noise. This paper proposes a novel mosaicing pipeline, also including a strategy to select the best reference homography in planar mosaics from video sequences which minimizes the distortions induced on each image by the mosaic homography itself. Moreover, a new non-linear color correction scheme is incorporated to handle strong color and luminosity variations among the mosaic frames. Experimental evaluation of the proposed method on real, challenging underwater video sequences shows the validity of the approach, providing clear and visually appealing mosaics.

Piecewise Planar Underwater Mosaicing / Bellavia, Fabio; Fanfani, Marco; Pazzaglia, Fabio; Colombo, Carlo; Costanzi, Riccardo; Monni, Niccolò; Ridolfi, Alessandro; Allotta, Benedetto. - ELETTRONICO. - (2015), pp. 0-0. (Intervento presentato al convegno OCEANS’15 MTS/IEEE GENOVA tenutosi a Genova, Italia nel 18-21 maggio 2015) [10.1109/OCEANS-Genova.2015.7271367].

Piecewise Planar Underwater Mosaicing

BELLAVIA, FABIO;FANFANI, MARCO;PAZZAGLIA, FABIO;COLOMBO, CARLO;MONNI, NICCOLO';RIDOLFI, ALESSANDRO;ALLOTTA, BENEDETTO
2015

Abstract

A commonly ignored problem in planar mosaics, yet often present in practice, is the selection of a reference homography reprojection frame where to attach the successive image frames of the mosaic. A bad choice for the reference frame can lead to severe distortions in the mosaic and can degenerate in incorrect configurations after some sequential frame concatenations. This problem is accentuated in uncontrolled underwater acquisition setups as those provided by AUVs or ROVs due to both the noisy trajectory of the acquisition vehicle – with roll and pitch shakes – and to the non-flat nature of the seabed which tends to break the planarity assumption implicit in the mosaic construction. These scenarios can also introduce other undesired effects, such as light variations between successive frames, scattering and attenuation, vignetting, flickering and noise. This paper proposes a novel mosaicing pipeline, also including a strategy to select the best reference homography in planar mosaics from video sequences which minimizes the distortions induced on each image by the mosaic homography itself. Moreover, a new non-linear color correction scheme is incorporated to handle strong color and luminosity variations among the mosaic frames. Experimental evaluation of the proposed method on real, challenging underwater video sequences shows the validity of the approach, providing clear and visually appealing mosaics.
2015
Proceedings of OCEANS’15 MTS/IEEE GENOVA
OCEANS’15 MTS/IEEE GENOVA
Genova, Italia
18-21 maggio 2015
Bellavia, Fabio; Fanfani, Marco; Pazzaglia, Fabio; Colombo, Carlo; Costanzi, Riccardo; Monni, Niccolò; Ridolfi, Alessandro; Allotta, Benedetto...espandi
File in questo prodotto:
File Dimensione Formato  
IEEE_UWmosaicing_DEF.pdf

Accesso chiuso

Descrizione: Articolo principale
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 1.21 MB
Formato Adobe PDF
1.21 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1003346
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact