BACKGROUND: Nerve Growth Factor (NGF) holds a great therapeutic promise for Alzheimer's disease, diabetic neuropathies, ophthalmic diseases, dermatological ulcers. However, the necessity for systemic delivery has hampered the clinical applications of NGF due to its potent pro-nociceptive action. A "painless" human NGF (hNGF R100E) mutant has been engineered. It has equal neurotrophic potency to hNGF but a lower nociceptive activity. We previously described and characterized the neurotrophic and nociceptive properties also of the hNGF P61S and P61SR100E mutants, selectively detectable against wild type hNGF. However, the reduced pain-sensitizing potency of the "painless" hNGF mutants has not been quantified. OBJECTIVES AND RESULTS: Aiming at the therapeutic application of the "painless" hNGF mutants, we report on the comparative functional characterization of the precursor and mature forms of the mutants hNGF R100E and hNGF P61SR100E as therapeutic candidates, also in comparison to wild type hNGF and to hNGF P61S. The mutants were assessed by a number of biochemical, biophysical methods and assayed by cellular assays. Moreover, a highly sensitive ELISA for the detection of the P61S-tagged mutants in biological samples has been developed. Finally, we explored the pro-nociceptive effects elicited by hNGF mutants in vivo, demonstrating an expanded therapeutic window with a ten-fold increase in potency. CONCLUSIONS: This structure-activity relationship study has led to validate the concept of developing painless NGF as a therapeutic, targeting the NGF receptor system and supporting the choice of hNGF P61S R100E as the best candidate to advance in clinical development. Moreover, this study contributes to the identification of the molecular determinants modulating the properties of the hNGF "painless" mutants.

Functional characterization of human ProNGF and NGF mutants: Identification of NGF P61SR100E as a "Painless" lead investigational candidate for therapeutic applications / Malerba F, Paoletti F, Ercole BB, Materazzi S, Nassini R, Coppi E, Patacchini R, Capsoni S, Lamba D, Cattaneo A.. - In: PLOS ONE. - ISSN 1932-6203. - ELETTRONICO. - 10:(2015), pp. e0136425-e0136425. [10.1371/journal.pone.0136425]

Functional characterization of human ProNGF and NGF mutants: Identification of NGF P61SR100E as a "Painless" lead investigational candidate for therapeutic applications

Paoletti F;Materazzi S;Nassini R;Coppi E;Patacchini R;
2015

Abstract

BACKGROUND: Nerve Growth Factor (NGF) holds a great therapeutic promise for Alzheimer's disease, diabetic neuropathies, ophthalmic diseases, dermatological ulcers. However, the necessity for systemic delivery has hampered the clinical applications of NGF due to its potent pro-nociceptive action. A "painless" human NGF (hNGF R100E) mutant has been engineered. It has equal neurotrophic potency to hNGF but a lower nociceptive activity. We previously described and characterized the neurotrophic and nociceptive properties also of the hNGF P61S and P61SR100E mutants, selectively detectable against wild type hNGF. However, the reduced pain-sensitizing potency of the "painless" hNGF mutants has not been quantified. OBJECTIVES AND RESULTS: Aiming at the therapeutic application of the "painless" hNGF mutants, we report on the comparative functional characterization of the precursor and mature forms of the mutants hNGF R100E and hNGF P61SR100E as therapeutic candidates, also in comparison to wild type hNGF and to hNGF P61S. The mutants were assessed by a number of biochemical, biophysical methods and assayed by cellular assays. Moreover, a highly sensitive ELISA for the detection of the P61S-tagged mutants in biological samples has been developed. Finally, we explored the pro-nociceptive effects elicited by hNGF mutants in vivo, demonstrating an expanded therapeutic window with a ten-fold increase in potency. CONCLUSIONS: This structure-activity relationship study has led to validate the concept of developing painless NGF as a therapeutic, targeting the NGF receptor system and supporting the choice of hNGF P61S R100E as the best candidate to advance in clinical development. Moreover, this study contributes to the identification of the molecular determinants modulating the properties of the hNGF "painless" mutants.
2015
10
e0136425
e0136425
Malerba F, Paoletti F, Ercole BB, Materazzi S, Nassini R, Coppi E, Patacchini R, Capsoni S, Lamba D, Cattaneo A.
File in questo prodotto:
File Dimensione Formato  
malerba paoletti et al 2015 pone.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 5.85 MB
Formato Adobe PDF
5.85 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1122392
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 29
social impact