The chemical composition of brewed coffee depends on numerous factors: the beans, post-harvest processing and, finally, the extraction method. In recent decades, numerous coffee-based beverages, obtained using different extraction techniques have entered the market. This study characterizes and compares eight extraction coffee methods from a chemical-physical point of view, starting from the same raw material. Specifically, three types of Espresso, Moka, French Press, and 3 filter coffee that for the first time are reported in the scientific literature Cold Brew, V60, and Aeropress are compared. Physical measurements included the quantification of total dissolved solids, density, pH, conductivity, and viscosity. Chemical analyses identified 15 chlorogenic acids (CGAs): six caffeoylquinic acids, one p-Coumaroylquinic acid, one Feruloylquinic Acid, four Caffeoylquinic lactones, and three Dicaffeoylquinic acids. Maximum caffeine and CGA concentrations were found in Espresso coffees, while Moka and filtered coffees were three to six times less concentrated. The classic Espresso method was most efficient for caffeine and CGA recovery, with a yield almost double that of other methods. Per-cup caffeine and CGAs were higher in Cold Brew than Espresso coffees, as a function of the volume of beverage, which ranged from 30 mL (for espresso) to 120 mL (for filtered coffees). In light of these results, it is not possible to establish how many cups of coffee can be consumed per day without exceeding the recommended doses, since according to the applied brewing method, the content of the bioactive substances varies considerably.

What kind of coffee do you drink? An investigation on effects of eight different extraction methods / Angeloni, Giulia*; Guerrini, Lorenzo; Masella, Piernicola; Bellumori, Maria; Daluiso, Selvaggia; Parenti, Alessandro; Innocenti, Marzia. - In: FOOD RESEARCH INTERNATIONAL. - ISSN 0963-9969. - ELETTRONICO. - (2019), pp. 1327-1335. [10.1016/j.foodres.2018.10.022]

What kind of coffee do you drink? An investigation on effects of eight different extraction methods

Angeloni, Giulia;Guerrini, Lorenzo;Masella, Piernicola;Bellumori, Maria;Parenti, Alessandro;Innocenti, Marzia
2019

Abstract

The chemical composition of brewed coffee depends on numerous factors: the beans, post-harvest processing and, finally, the extraction method. In recent decades, numerous coffee-based beverages, obtained using different extraction techniques have entered the market. This study characterizes and compares eight extraction coffee methods from a chemical-physical point of view, starting from the same raw material. Specifically, three types of Espresso, Moka, French Press, and 3 filter coffee that for the first time are reported in the scientific literature Cold Brew, V60, and Aeropress are compared. Physical measurements included the quantification of total dissolved solids, density, pH, conductivity, and viscosity. Chemical analyses identified 15 chlorogenic acids (CGAs): six caffeoylquinic acids, one p-Coumaroylquinic acid, one Feruloylquinic Acid, four Caffeoylquinic lactones, and three Dicaffeoylquinic acids. Maximum caffeine and CGA concentrations were found in Espresso coffees, while Moka and filtered coffees were three to six times less concentrated. The classic Espresso method was most efficient for caffeine and CGA recovery, with a yield almost double that of other methods. Per-cup caffeine and CGAs were higher in Cold Brew than Espresso coffees, as a function of the volume of beverage, which ranged from 30 mL (for espresso) to 120 mL (for filtered coffees). In light of these results, it is not possible to establish how many cups of coffee can be consumed per day without exceeding the recommended doses, since according to the applied brewing method, the content of the bioactive substances varies considerably.
2019
1327
1335
Angeloni, Giulia*; Guerrini, Lorenzo; Masella, Piernicola; Bellumori, Maria; Daluiso, Selvaggia; Parenti, Alessandro; Innocenti, Marzia
File in questo prodotto:
File Dimensione Formato  
Angeloni et al_Food Research International_2018-in Press.pdf

accesso aperto

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Creative commons
Dimensione 423.08 kB
Formato Adobe PDF
423.08 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1142622
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 120
  • ???jsp.display-item.citation.isi??? 97
social impact