This study was aimed at demonstrating the substantial equivalence of two extra virgin olive oil samples extracted from the same batch of Coratina olives with (OMU) or without (OMN) using ultrasound technology, by performing chemical, biochemical, and cellular investigations. The volatile organic compounds compositions and phenolic profiles were very similar, showing that, while increasing the extraction yields, the innovative process does not change these features. The antioxidant and hypocholesterolemic activities of the extra virgin olive oil (EVOO) phenol extracts were also preserved, since OMU and OMN had equivalent abilities to scavenge the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,20-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radicals in vitro and to protect HepG2 cells from oxidative stress induced by H2O2, reducing intracellular reactive oxygen species (ROS) and lipid peroxidation levels. In addition, by inhibiting 3-hydroxy-3-methylglutarylcoenzyme a reductase, both samples modulated the low-density lipoprotein receptor (LDLR) pathway leading to increased LDLR protein levels and activity.

Virgin Olive Oil Extracts Reduce Oxidative Stress and Modulate Cholesterol Metabolism: Comparison between Oils Obtained with Traditional and Innovative Processes / Carmen Lammi, Nadia Mulinacci, Lorenzo Cecchi, Maria Bellumori, Carlotta Bollati, Martina Bartolomei, Carlo Franchini, Maria Lisa Clodoveo, Filomena Corbo, Anna Arnoldi. - In: ANTIOXIDANTS. - ISSN 2076-3921. - ELETTRONICO. - 9:(2020), pp. 0-0. [10.3390/antiox9090798]

Virgin Olive Oil Extracts Reduce Oxidative Stress and Modulate Cholesterol Metabolism: Comparison between Oils Obtained with Traditional and Innovative Processes

Nadia Mulinacci;Lorenzo Cecchi;Maria Bellumori;
2020

Abstract

This study was aimed at demonstrating the substantial equivalence of two extra virgin olive oil samples extracted from the same batch of Coratina olives with (OMU) or without (OMN) using ultrasound technology, by performing chemical, biochemical, and cellular investigations. The volatile organic compounds compositions and phenolic profiles were very similar, showing that, while increasing the extraction yields, the innovative process does not change these features. The antioxidant and hypocholesterolemic activities of the extra virgin olive oil (EVOO) phenol extracts were also preserved, since OMU and OMN had equivalent abilities to scavenge the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,20-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radicals in vitro and to protect HepG2 cells from oxidative stress induced by H2O2, reducing intracellular reactive oxygen species (ROS) and lipid peroxidation levels. In addition, by inhibiting 3-hydroxy-3-methylglutarylcoenzyme a reductase, both samples modulated the low-density lipoprotein receptor (LDLR) pathway leading to increased LDLR protein levels and activity.
2020
9
0
0
Goal 3: Good health and well-being for people
Carmen Lammi, Nadia Mulinacci, Lorenzo Cecchi, Maria Bellumori, Carlotta Bollati, Martina Bartolomei, Carlo Franchini, Maria Lisa Clodoveo, Filomena Corbo, Anna Arnoldi
File in questo prodotto:
File Dimensione Formato  
Virgin Olive Oil Extracts Reduce Oxidative Stress and Modulate Cholesterol Metabolism.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 2.36 MB
Formato Adobe PDF
2.36 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1204029
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 11
social impact