Since the development of the first autonomous underwater vehicles, the demanded tasks for subsea operations have become more and more challenging as, for instance, intervention, maintenance and repair of seabed installations, in addition to surveys. As a result, the development of autonomous underwater reconfigurable vehicles (AURVs) with the capability of interacting with the surrounding environment and autonomously changing the configuration, according to the task at hand, can represent a real breakthrough in underwater system technologies. Driven by these considerations, an innovative AURV has been designed by the Department of Industrial Engineering of the University of Florence (named as UNIFI DIEF AURV), capable of efficiently reconfiguring its shape according to the task at hand. In particular, the UNIFI DIEF AURV has been provided with two extreme configurations: a slender (“survey”) configuration for long navigation tasks, and a stocky (“hovering”) configuration designed for challenging goals as intervention operations. In order to observe the several dynamic features for the two different configurations, a novel formulation for the dynamic maneuverability analysis (DMA) of an AURV, adapting Yoshikawa’s well-known manipulability theory for robotic arms, is proposed in this work. More specifically, we introduce a novel analysis which relates the vehicle body-fixed accelerations with the rotational speed of each thruster, taking into account also the AURV dynamic model for each configuration and the propulsion system.

Dynamic maneuverability analysis: A preliminary application on an autonomous underwater reconfigurable vehicle / Topini E.; Pagliai M.; Allotta B.. - In: APPLIED SCIENCES. - ISSN 2076-3417. - ELETTRONICO. - 11:(2021), pp. 1-20. [10.3390/app11104469]

Dynamic maneuverability analysis: A preliminary application on an autonomous underwater reconfigurable vehicle

Topini E.
;
Allotta B.
2021

Abstract

Since the development of the first autonomous underwater vehicles, the demanded tasks for subsea operations have become more and more challenging as, for instance, intervention, maintenance and repair of seabed installations, in addition to surveys. As a result, the development of autonomous underwater reconfigurable vehicles (AURVs) with the capability of interacting with the surrounding environment and autonomously changing the configuration, according to the task at hand, can represent a real breakthrough in underwater system technologies. Driven by these considerations, an innovative AURV has been designed by the Department of Industrial Engineering of the University of Florence (named as UNIFI DIEF AURV), capable of efficiently reconfiguring its shape according to the task at hand. In particular, the UNIFI DIEF AURV has been provided with two extreme configurations: a slender (“survey”) configuration for long navigation tasks, and a stocky (“hovering”) configuration designed for challenging goals as intervention operations. In order to observe the several dynamic features for the two different configurations, a novel formulation for the dynamic maneuverability analysis (DMA) of an AURV, adapting Yoshikawa’s well-known manipulability theory for robotic arms, is proposed in this work. More specifically, we introduce a novel analysis which relates the vehicle body-fixed accelerations with the rotational speed of each thruster, taking into account also the AURV dynamic model for each configuration and the propulsion system.
2021
11
1
20
Goal 9: Industry, Innovation, and Infrastructure
Topini E.; Pagliai M.; Allotta B.
File in questo prodotto:
File Dimensione Formato  
applsci-11-04469.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 866.82 kB
Formato Adobe PDF
866.82 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1257735
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact