Motivated by classification issues in marine studies, we propose a hidden semi-Markov model to segment toroidal time series according to a finite number of latent regimes. The time spent in a given regime and the chances of a regime switching event are separately modeled by a battery of regression models that depend on time-varying covariates.

Segmenting toroidal time series by nonhomogeneous hidden semi-Markov models / Francesco Lagona; Marco Mingione. - (2023), pp. 197-200.

Segmenting toroidal time series by nonhomogeneous hidden semi-Markov models

Marco Mingione
2023

Abstract

Motivated by classification issues in marine studies, we propose a hidden semi-Markov model to segment toroidal time series according to a finite number of latent regimes. The time spent in a given regime and the chances of a regime switching event are separately modeled by a battery of regression models that depend on time-varying covariates.
2023
9788891935632
CLADAG 2023 Book of abstracts and short papers
197
200
Francesco Lagona; Marco Mingione
File in questo prodotto:
File Dimensione Formato  
215_PDFsam_CLADAG-2023.pdf

Accesso chiuso

Licenza: Tutti i diritti riservati
Dimensione 216.69 kB
Formato Adobe PDF
216.69 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1438421
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact