In the early 2000s, data from the latest World Health Organization estimates paint a picture where one-seventh of the world population needs at least one assistive device. Fortunately, these years are also characterized by a marked technological drive which takes the name of the Fourth Industrial Revolution. In this terrain, robotics is making its way through more and more aspects of everyday life, and robotics-based assistance/rehabilitation is considered one of the most encouraging applications. Providing high-intensity rehabilitation sessions or home assistance through low-cost robotic devices can be indeed an effective solution to democratize services otherwise not accessible to everyone. However, the identification of an intuitive and reliable real-time control system does arise as one of the critical issues to unravel for this technology in order to land in homes or clinics. Intention recognition techniques from surface ElectroMyoGraphic (sEMG) signals are referred to as one of the main ways-to-go in literature. Nevertheless, even if widely studied, the implementation of such procedures to real-case scenarios is still rarely addressed. In a previous work, the development and implementation of a novel sEMG-based classification strategy to control a fully-wearable Hand Exoskeleton System (HES) have been qualitatively assessed by the authors. This paper aims to furtherly demonstrate the validity of such a classification strategy by giving quantitative evidence about the favourable comparison to some of the standard machine-learning-based methods. Real-time action, computational lightness, and suitability to embedded electronics will emerge as the major characteristics of all the investigated techniques.

A Novel Point-in-Polygon-Based sEMG Classifier for Hand Exoskeleton Systems / Secciani N.; Topini A.; Ridolfi A.; Meli E.; Allotta B.. - In: IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING. - ISSN 1534-4320. - STAMPA. - 28:(2020), pp. 3158-3166. [10.1109/TNSRE.2020.3044113]

A Novel Point-in-Polygon-Based sEMG Classifier for Hand Exoskeleton Systems

Secciani N.
;
Topini A.;Ridolfi A.;Meli E.;Allotta B.
2020

Abstract

In the early 2000s, data from the latest World Health Organization estimates paint a picture where one-seventh of the world population needs at least one assistive device. Fortunately, these years are also characterized by a marked technological drive which takes the name of the Fourth Industrial Revolution. In this terrain, robotics is making its way through more and more aspects of everyday life, and robotics-based assistance/rehabilitation is considered one of the most encouraging applications. Providing high-intensity rehabilitation sessions or home assistance through low-cost robotic devices can be indeed an effective solution to democratize services otherwise not accessible to everyone. However, the identification of an intuitive and reliable real-time control system does arise as one of the critical issues to unravel for this technology in order to land in homes or clinics. Intention recognition techniques from surface ElectroMyoGraphic (sEMG) signals are referred to as one of the main ways-to-go in literature. Nevertheless, even if widely studied, the implementation of such procedures to real-case scenarios is still rarely addressed. In a previous work, the development and implementation of a novel sEMG-based classification strategy to control a fully-wearable Hand Exoskeleton System (HES) have been qualitatively assessed by the authors. This paper aims to furtherly demonstrate the validity of such a classification strategy by giving quantitative evidence about the favourable comparison to some of the standard machine-learning-based methods. Real-time action, computational lightness, and suitability to embedded electronics will emerge as the major characteristics of all the investigated techniques.
2020
28
3158
3166
Goal 3: Good health and well-being for people
Goal 9: Industry, Innovation, and Infrastructure
Secciani N.; Topini A.; Ridolfi A.; Meli E.; Allotta B.
File in questo prodotto:
File Dimensione Formato  
09291412_DEF_DEF.pdf

Accesso chiuso

Descrizione: Articolo principale
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 6.2 MB
Formato Adobe PDF
6.2 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1225526
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 11
social impact