Rheumatoid arthritis is an autoimmune disorder that causes chronic joint pain, swelling, and movement impairment, resulting from prolonged inflammation-induced cartilage and bone degradation. The pathogenesis of RA, which is still unclear, makes diagnosis and treatment difficult and calls for new therapeutic strategies to cure the disease. Recent research has identified FPRs as a promising druggable target, with AMC3, a novel agonist, showing preclinical efficacy in vitro and in vivo. In vitro, AMC3 (1-30 mu M) exhibited significant antioxidant effects in IL-1 beta (10 ng/mL)-treated chondrocytes for 24 h. AMC3 displayed a protective effect by downregulating the mRNA expression of several pro-inflammatory and pro-algic genes (iNOS, COX-2, and VEGF-A), while upregulating genes essential for structural integrity (MMP-13, ADAMTS-4, and COLIAI). In vivo, AMC3 (10 mg kg(-1)) prevented hypersensitivity and restored postural balance in CFA-injected rats after 14 days. AMC3 attenuated joint alterations, reduced joint inflammatory infiltrate, pannus formation, and cartilage erosion. Chronic AMC3 administration reduced transcriptional changes of genes causing excitotoxicity and pain (EAATs and CCL2) and prevented morphological changes in astrocytes, including cell body hypertrophy, processes length, and thickness, caused by CFA in the spinal cord. This study demonstrates the usefulness of AMC3 and establishes the groundwork for further research.

Protective and Pain-Killer Effects of AMC3, a Novel N-Formyl Peptide Receptors (FPRs) Modulator, in Experimental Models of Rheumatoid Arthritis / Ferrara V.; Toti A.; Lucarini E.; Parisio C.; Micheli L.; Ciampi C.; Margiotta F.; Crocetti L.; Vergelli C.; Giovannoni M.P.; Di Cesare Mannelli L.; Ghelardini C.. - In: ANTIOXIDANTS. - ISSN 2076-3921. - ELETTRONICO. - 12:(2023), pp. 1207-1226. [10.3390/antiox12061207]

Protective and Pain-Killer Effects of AMC3, a Novel N-Formyl Peptide Receptors (FPRs) Modulator, in Experimental Models of Rheumatoid Arthritis

Ferrara V.;Toti A.;Lucarini E.
;
Parisio C.;Micheli L.;Ciampi C.;Margiotta F.;Crocetti L.;Vergelli C.;Giovannoni M. P.;Di Cesare Mannelli L.;Ghelardini C.
2023

Abstract

Rheumatoid arthritis is an autoimmune disorder that causes chronic joint pain, swelling, and movement impairment, resulting from prolonged inflammation-induced cartilage and bone degradation. The pathogenesis of RA, which is still unclear, makes diagnosis and treatment difficult and calls for new therapeutic strategies to cure the disease. Recent research has identified FPRs as a promising druggable target, with AMC3, a novel agonist, showing preclinical efficacy in vitro and in vivo. In vitro, AMC3 (1-30 mu M) exhibited significant antioxidant effects in IL-1 beta (10 ng/mL)-treated chondrocytes for 24 h. AMC3 displayed a protective effect by downregulating the mRNA expression of several pro-inflammatory and pro-algic genes (iNOS, COX-2, and VEGF-A), while upregulating genes essential for structural integrity (MMP-13, ADAMTS-4, and COLIAI). In vivo, AMC3 (10 mg kg(-1)) prevented hypersensitivity and restored postural balance in CFA-injected rats after 14 days. AMC3 attenuated joint alterations, reduced joint inflammatory infiltrate, pannus formation, and cartilage erosion. Chronic AMC3 administration reduced transcriptional changes of genes causing excitotoxicity and pain (EAATs and CCL2) and prevented morphological changes in astrocytes, including cell body hypertrophy, processes length, and thickness, caused by CFA in the spinal cord. This study demonstrates the usefulness of AMC3 and establishes the groundwork for further research.
2023
12
1207
1226
Ferrara V.; Toti A.; Lucarini E.; Parisio C.; Micheli L.; Ciampi C.; Margiotta F.; Crocetti L.; Vergelli C.; Giovannoni M.P.; Di Cesare Mannelli L.; Ghelardini C.
File in questo prodotto:
File Dimensione Formato  
Antioxidants.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 5.58 MB
Formato Adobe PDF
5.58 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1326052
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact